9.在數(shù)列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,記Sn為數(shù)列{an}的前n項和,則S2015=1008.

分析 a1=1,an+1-an=$sin\frac{(n+1)π}{2}$,可得a2=a1+sinπ=1,同理可得a3=1-1=0,a4=0+0=0,a5=0+1=1,可得a5=a1,以此類推可得an+4=an.利用數(shù)列的周期性即可得出.

解答 解:∵a1=1,an+1-an=$sin\frac{(n+1)π}{2}$,
∴a2=a1+sinπ=1,同理可得a3=1-1=0,a4=0+0=0,a5=0+1=1,
∴a5=a1,
以此類推可得an+4=an
∴S2015=503×(a1+a2+a3+a4)+a1+a2+a3=503×2+2=1008.
故答案為:1008.

點評 本題考查了數(shù)列的周期性、三角函數(shù)的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若向量$\overrightarrow{a}$=(2cosα,-1),$\overrightarrow$=($\sqrt{3}$,tanα),且$\overrightarrow{a}$$∥\overrightarrow$,則sinα=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線kx+y+4=0上存在點P,過點P作圓x2+y2-2y=0的切線,切點為Q,若|PQ|=2,則實數(shù)k的取值范圍是( 。
A.[-2,2]B.[2,+∞)C.(-∞,-2]∪[2,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)=f′($\frac{π}{6}$)sinx+f′($\frac{π}{3}$)cosx+x,則f′($\frac{π}{3}$)=(  )
A.3-$\sqrt{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.集合A={0,|x|},B={1,0,-1},若A⊆B,則A∩B={0,1},A∪B={-1,0,1},∁BA={-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=2cos(2x+α)是偶函數(shù),且在[0,$\frac{π}{4}$]上是增函數(shù),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i為虛數(shù)單位,復(fù)數(shù)z1=2+i,z2=1-2i,則z1+z2=(  )
A.1+iB.2-iC.3-iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=sin(x+$\frac{π}{6}$)(x∈R),為了得到函數(shù)y=f(x)的圖象,只需將函數(shù)g(x)=sin(x+$\frac{π}{3}$)(x∈R)的圖象(  )
A.向左平移$\frac{π}{12}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC內(nèi),b2=a2+bc,A=$\frac{π}{6}$,求角C.

查看答案和解析>>

同步練習(xí)冊答案