14.某中學(xué)為了了解學(xué)生的文化素養(yǎng)與課外閱讀時間的關(guān)系,對該校200名高二學(xué)生每天的平均課外閱讀時間進(jìn)行調(diào)查,結(jié)果如下表:(時間單位:分鐘)
 每天平均閱讀時間(分鐘)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
 總?cè)藬?shù) 20 36 44 50 30 20
將學(xué)生每天平均課外閱讀時間(分鐘)在[40,60)內(nèi)的學(xué)生評價為“課外閱讀達(dá)標(biāo)”
(Ⅰ)根據(jù)上述表格中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯誤的概率不超過0.01的前提想認(rèn)為“課外閱讀達(dá)標(biāo)”與性別有關(guān)?
 課外閱讀不達(dá)標(biāo)課外閱讀達(dá)標(biāo) 合計(jì) 
男    
女   3090 
 合計(jì)   
(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從該校高二學(xué)生中抽取5名學(xué)生,記被抽取的5名學(xué)生中“課外閱讀達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差
參考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù).
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

分析 (Ⅰ)根據(jù)所給的數(shù)據(jù)列出列聯(lián)表,再代入公式計(jì)算得出K2,與臨界值比較即可得出結(jié)論;
(Ⅱ)由題意,用頻率代替概率可得出抽到“課外體育達(dá)標(biāo)”學(xué)生的頻率為0.25,由于X~B(5,$\frac{1}{4}$),由公式計(jì)算出期望與方差即可.

解答 解:列出列聯(lián)表,

 課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
 9020110
603090
合計(jì)15050200
(Ⅰ)${K}^{2}=\frac{200×(90×30-20×60)^{2}}{150×50×90×110}$≈6.060<6.635,
∴在犯錯誤的概率不超過0.01的前提下不能判斷“課外體育達(dá)標(biāo)”與性別有關(guān);
(Ⅱ)由表中數(shù)據(jù)可得,抽到“課外體育達(dá)標(biāo)”學(xué)生的頻率為0.25,將頻率視為概率,
∴X~B(5,$\frac{1}{4}$),
∴E(X)=5×$\frac{1}{4}$=$\frac{5}{4}$,D(X)=5×$\frac{1}{4}$×(1-$\frac{1}{4}$)=$\frac{15}{16}$.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)的運(yùn)用及期望與方差的求法,考查學(xué)生讀取圖表的能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對命題“?x0∈R,x${\;}_{0}^{2}$-2x0+4>0”的否定正確的是(  )
A.$?{x_0}∈R\;,\;{x_0}^2-2{x_0}+4>0$B.?x∈R,x2-2x+4≤0
C.?x∈R,x2-2x+4>0D.?x∈R,x2-2x+4≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.化簡:(1)sin(-α)sin(π-α)-2cos2(-α)+1=-cos2α;
(2)$\frac{cos(α-π)•tan(4π-α)}{sin(-2π-α)}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過點(diǎn)($\sqrt{2}$,0)引直線l與曲線y=$\sqrt{1-{x}^{2}}$相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大值時,直線l的斜率等于( 。
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)單位向量$\overrightarrow{e}$=(cos$α,\frac{1}{3}$),則cos2α的值為( 。
A.$\frac{7}{9}$B.-$\frac{1}{2}$C.-$\frac{7}{9}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.己知集合A={x|(x-1)(x-2)<0},B={x|1≤2x≤4},則A∩B=( 。
A.{x|l<x<2}B.{x|l≤x≤2}C.{x|l≤x<2}D.{x|0≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\sqrt{3x-xlgx}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1000,+∞)B.(0,1000]C.(0,$\frac{1}{1000}$]D.(-∞,1000]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x<1},B={x|2x<1},則( 。
A.A∩B={x|x<0}B.A∪B=RC.A∩B={x|x<1}D.A∪B={x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出 2017 個數(shù):1,2,4,7,11,…,要計(jì)算這2017個數(shù)的和,現(xiàn)已給出了該問題的程序框圖如圖所示,那么框圖中判斷框①處和執(zhí)行框②處應(yīng)分別填入( 。
A.i≤2017?;p=p+i-1B.i≤2018?;p=p+i+1C.i≤2018?;p=p+iD.i≤2017?;p=p+i

查看答案和解析>>

同步練習(xí)冊答案