【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當(dāng)x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.

(1)試求y=f(x)的函數(shù)關(guān)系式;

(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

【答案】1;(2)老師在時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳.

【解析】

試題(1)先根據(jù)頂點式設(shè)二次函數(shù)解析式,再代入點求開口,最后利用待定系數(shù)法求一次函數(shù)解析式,寫成分段函數(shù)形式(2)由題意解不等式,先分段求解,再求并集

試題解析:解:(1)當(dāng)x∈(0,12]時,

設(shè)f(x)=a(x﹣10)2+80

過點(12,78)代入得,

當(dāng)x∈[12,40]時,

設(shè)y=kx+b,過點B(12,78)、C(40,50)

,即y=﹣x+90

則的函數(shù)關(guān)系式為

(2)由題意得,

得4<x≤12或12<x<28,

4<x<28

則老師就在x∈(4,28)時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊需對隊員進行限時的仰臥起坐達標(biāo)測試;已知隊員的測試分?jǐn)?shù)與仰臥起坐

個數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊員最多進行三組測試,

每組限時1分鐘,當(dāng)一組測完,測試成績達到60分或以上時,就以此組測試成績作為該

隊員的成績,無需再進行后續(xù)的測試,最多進行三組;根據(jù)以往的訓(xùn)練統(tǒng)計,隊員“喵兒”

在一分鐘內(nèi)限時測試的頻率分布直方圖如下:

(1)計算值,并根據(jù)直方圖計算“喵兒”1分鐘內(nèi)仰臥起坐的個數(shù);

(2)計算在本次的三組測試中,“喵兒”得分等于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),a為正常數(shù)),且函數(shù)的圖象與y軸的交點重合.

1)求a實數(shù)的值

2)若b為常數(shù))試討論函數(shù)的奇偶性;

3)若關(guān)于x的不等式有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對在直角坐標(biāo)系的第一象限內(nèi)的任意兩點作如下定義:若,那么稱點是點上位點同時點是點下位點

1)試寫出點的一個上位點坐標(biāo)和一個下位點坐標(biāo);

2)已知點是點上位點,判斷是否一定存在點滿足既是點上位點,又是點下位點若存在,寫出一個點坐標(biāo),并證明:若不存在,則說明理由;

3)設(shè)正整數(shù)滿足以下條件:對集合,總存在,使得點既是點下位點,又是點上位點,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與橢圓相交于,兩個不同的點,與軸相交于點,為坐標(biāo)原點.

(1)證明:;

(2)若,求的面積取得最大值時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過點 ,且滿足

(1)求的解析式;

(2)已知,求函數(shù)的最大值和最小值;

函數(shù)的圖像上是否存在這樣的點,其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個完全平方數(shù)?如果存在,求出這樣的點的坐標(biāo);如果不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線和直線在該直角坐標(biāo)系下的普通方程;

(2)動點在曲線上,動點在直線上,定點的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機抽取人,從女生中隨機抽取人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

女生

總計

(1)試判斷能否有的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);

附:

(2)為了宣傳消防知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機選出人組成宣傳小組.現(xiàn)從這人中隨機抽取人到校外宣傳,求到校外宣傳的同學(xué)中男生人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋里共有4個球,其中有2個是白球,2個是黑球,這4個球除顏色外完全相同。4個人按順序依次從中摸出一個球(不放回),試計算第二個人摸到白球的概率.

查看答案和解析>>

同步練習(xí)冊答案