20.如圖,平面ABC⊥平面α,D為線段AB的中點(diǎn),$|{AB}|=2\sqrt{2}$,∠CDB=45°,點(diǎn)P為面α內(nèi)的動(dòng)點(diǎn),且P到直線CD的距離為$\sqrt{2}$,則∠APB的最大值為90°

分析 空間中到直線CD的距離為$\sqrt{2}$的點(diǎn)構(gòu)成一個(gè)圓柱面,它和面α相交得一橢圓,所以P在α內(nèi)的軌跡為一個(gè)橢圓,D為橢圓的中心,且c=$\sqrt{2}$,b=$\sqrt{2}$,a=2.利用橢圓的性質(zhì):橢圓上點(diǎn)關(guān)于兩焦點(diǎn)的張角在短軸的端點(diǎn)取得最大,即可得出.

解答 解:空間中到直線CD的距離為$\sqrt{2}$的點(diǎn)構(gòu)成一個(gè)圓柱面,它和面α相交得一橢圓,所以P在α內(nèi)的軌跡為一個(gè)橢圓,D為橢圓的中心,
c=$\sqrt{2}$,b=$\sqrt{2}$,a=2,
于是A,B為橢圓的焦點(diǎn),橢圓上點(diǎn)關(guān)于兩焦點(diǎn)的張角在短軸的端點(diǎn)取得最大,
∴∠APB=2∠APD=90°.
故答案為:90°

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、距離的計(jì)算、線面垂直判定與性質(zhì)定理、橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在四棱錐P-ABCD中,底面ABCD是菱形,AB=2,∠BAD=60°,PC⊥BD.
(1)證明:PB=PD;
(2)若平面PBD⊥平面ABCD,且∠DPB=90°,求點(diǎn)B到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求關(guān)于x的不等式m2x+2>2mx+m的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四邊形ACED和四邊形CBFE都是矩形,且二面角A-CE-B是直二面角,AM垂直CD交CE于M.
(1)求證:AM⊥BD;
(2)若AD=$\sqrt{6}$,BC=1,AC=$\sqrt{3}$,求二面角M-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一個(gè)棱長(zhǎng)為5的正四面體(棱長(zhǎng)都相等的三棱錐)紙盒內(nèi)放一個(gè)小正四面體,若小正四面體在紙盒內(nèi)可以任意轉(zhuǎn)動(dòng),則小正四面體的棱長(zhǎng)的最大值為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直角坐標(biāo)系xOy中,曲線${C_1}:\left\{{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),點(diǎn)P是曲線C1與x軸正半軸的交點(diǎn).在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系軸,曲線C2:ρcosθ+ρsinθ+3=0.
(1)求曲線C1的極坐標(biāo)方程和過(guò)點(diǎn)P的曲線C1的切線極坐標(biāo)方程;
(2)在曲線C1上求一點(diǎn)Q(a,b),它到曲線C2的距離最長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)點(diǎn)P的直角坐標(biāo)為(-3,3),以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系(0≤θ<2π),則點(diǎn)P的極坐標(biāo)為( 。
A.$(3\sqrt{2},\frac{3π}{4})$B.$(-3\sqrt{2},\frac{5π}{4})$C.$(3,\frac{5π}{4})$D.$(-3,\frac{3π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將正偶數(shù)排列如表,其中第i行第j個(gè)數(shù)表示aij(i∈N*,j∈N*),例如a32=10,若aij=2012,則i+j=( 。
A.60B.61C.62D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.半圓C的極坐標(biāo)方程為ρ=4sinθ($\frac{π}{4}$<θ<$\frac{3π}{4}$),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,直線l:$\left\{\begin{array}{l}x=a+\sqrt{2}t\\ y=a+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)).
(1)求半圓C的標(biāo)準(zhǔn)方程和直線l的普通方程;
(2)若直線l與曲線C有且只有2個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案