19.已知變量x與變量y之間具有相關(guān)關(guān)系,并測(cè)得如下一組數(shù)據(jù):
x651012
y6532
則變量x與y之間的線性回歸直線方程可能為(  )
A.$\widehaty$=0.7x-2.3B.$\widehaty$=-0.7x+10.3C.$\widehaty$=-10.3x+0.7D.$\widehaty$=10.3x-0.7

分析 根據(jù)表中數(shù)據(jù),計(jì)算$\overline{x}$、$\overline{y}$,再根據(jù)變量y隨變量x的增大而減小,是負(fù)相關(guān),驗(yàn)證回歸直線方程是否過過樣本中心點(diǎn)($\overline{x}$,$\overline{y}$)即可.

解答 解:根據(jù)表中數(shù)據(jù),得;
$\overline{x}$=$\frac{1}{4}$(6+5+10+12)=$\frac{33}{4}$,
$\overline{y}$=$\frac{1}{4}$(6+5+3+2)=4,
且變量y隨變量x的增大而減小,是負(fù)相關(guān),
所以,驗(yàn)證$\overline{x}$=$\frac{33}{4}$時(shí),$\widehaty$=-0.7×$\frac{33}{4}$+10.3≈4,
即回歸直線$\widehaty$=-0.7x+10.3過樣本中心點(diǎn)($\overline{x}$,$\overline{y}$).
故選:B.

點(diǎn)評(píng) 本題考查了線性回歸方程過樣本中心點(diǎn)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名六年級(jí)學(xué)生進(jìn)行了問卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在這30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為$\frac{4}{15}$.
常喝不常喝合計(jì)
肥胖2
不肥胖18
合計(jì)30
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整.能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.
(2)現(xiàn)從常喝碳酸飲料的學(xué)生中抽取3人參加電視節(jié)目,記ξ表示常喝碳酸飲料且肥胖的學(xué)生人數(shù),求ξ的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.高安中學(xué)學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3 個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.
(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)在第一次訓(xùn)練時(shí)至少取到一個(gè)新球的條件下,求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.期中考試后,我校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析.規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
優(yōu)秀人數(shù)非優(yōu)秀人數(shù)合計(jì)
甲班10x50
乙班y3050
合計(jì)3070100
(1)求出表格中x,y的值;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”,并說明理由.
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=sin(ωx+φ)(φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),若$cos∠APB=-\frac{{\sqrt{5}}}{5}$,則ω的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,如果acosB+acosC=b+c.試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.過拋物線x2=2py(p>0)上一點(diǎn)P與圓C:x2+(y-2)2=4相切的兩條切線方程分別為y=m與4x-3y+n=0.
(I)求拋物線的方程;
(Ⅱ)當(dāng)p>1時(shí),設(shè)Q(s,t)(t>4)是拋物線上不同于P點(diǎn)的一點(diǎn),求過Q點(diǎn)與圓相切的兩條直線與x軸圍成的三角形面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且$\overrightarrow{a}$$•\overrightarrow$=0,若向量的模|$\overrightarrow{c}$$-\overrightarrow{a}$$+\overrightarrow$|=1,則|$\overrightarrow{c}$|的最小值為$\sqrt{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,n),且3$\overrightarrow{a}$=2$\overrightarrow$,則實(shí)數(shù)n=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案