試證:=
【答案】分析:先把等式左邊得正切換成正弦和余弦函數(shù),進(jìn)而利用兩角和公式進(jìn)行化簡整理,進(jìn)而把等式右邊正切轉(zhuǎn)化成正余弦,利用二倍角公式化簡整理,最后發(fā)現(xiàn)結(jié)果相同,進(jìn)而可證明等式成立.
解答:證明:左邊=
====cot
右邊==
==cot,
∴原等式成立.
點評:本題主要考查了三角函數(shù)恒等式的證明.考查了學(xué)生對三角函數(shù)的基本公式的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x1>0,x1≠1且xn+1=
xn(xn2+3)3xn2+1
(n=1,2,…)試證:xn<xn+1或xn>xn+1(n=1,2,…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x函數(shù)g(x)=
2x
+alnx(a∈R),f(x)=x2+g(x),
(Ⅰ)試討論函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,試證f(x)在區(qū)間(0,1)內(nèi)有極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB,E、F分別為PC、CD的中點.
(Ⅰ)試證:AB⊥平面BEF;
(Ⅱ)設(shè)PA=k•AB,且二面角E-BD-C的平面角大于45°,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點M(0,1)N(0,-1),平面上動點P(x,y)滿足|
NM
|•|
MP
|+
MN
NP
=0

(Ⅰ)求動點P(x,y)的軌跡C的方程;
(Ⅱ)設(shè)Q(0,m),R(0,-m)(m≠0)是y軸上兩點,過Q作直線與曲線C交于A、B兩點,試證:直線RA、RB與y軸所成的銳角相等;
(Ⅲ).在Ⅱ的條件中,若m<0,直線AB的斜率為1,求△RAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=
1
2
成立.
(Ⅰ)求和f(
1
n
)
+f(
n-1
n
)
(n∈N*)的值;
(Ⅱ)數(shù)列{an}滿足條件;an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,試證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案