18.經(jīng)過(guò)雙曲線x2-$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)F1作傾斜角為$\frac{π}{6}$的弦AB.求:
(1)線段AB的長(zhǎng);
(2)設(shè)F2為右焦點(diǎn),求△F2AB的周長(zhǎng).

分析 (1)求出雙曲線的焦點(diǎn)坐標(biāo),求出直線的斜率,利用點(diǎn)斜式求出直線方程;將直線的方程代入雙曲線的方程,利用兩點(diǎn)的距離公式求出|AB|.
(2)求出|BF2|,|AF2|,即可得到△F2AB的周長(zhǎng).

解答 解:(1)∵雙曲線的左焦點(diǎn)為F1(-2,0),設(shè)A(x1,y1),B(x2,y2),
直線AB的方程可設(shè)為y=$\frac{\sqrt{3}}{3}$(x+2),代入方程x2-$\frac{{y}^{2}}{3}$=1得,8x2-4x-13=0,
∴x1+x2=$\frac{1}{2}$,x1x2=-$\frac{13}{8}$,
∴|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=3;
(2)|F1A|=$\sqrt{1+{k}^{2}}$|x1-(-2)|=$\frac{3\sqrt{3}-3}{2}$
由雙曲線的定義得|BF2|=|BF1|-2=|AB|+|AF1|-2=1+$\frac{3\sqrt{3}-3}{2}$
|AF2|=|AF1|+2=2+$\frac{3\sqrt{3}-3}{2}$,
∴△F2AB的周長(zhǎng)為3+3$\sqrt{3}$.

點(diǎn)評(píng) 本題考查直線與雙曲線的位置關(guān)系,考查雙曲線的定義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.解決直線與圓錐曲線的弦長(zhǎng)問(wèn)題常將直線的方程與圓錐曲線方程聯(lián)立,利用弦長(zhǎng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.圖中,能表示函數(shù)y=f(x)的圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.對(duì)任意實(shí)數(shù)a,b,c,d,定義符號(hào)$(\begin{array}{l}{a}&\\{c}&k3g8q1j\end{array})$=$\left\{\begin{array}{l}{\sqrt{ad-bc}(ad≥bc)}\\{\frac{1}{2}\sqrt{bc-ad}(ad<bc)}\end{array}\right.$,已知函數(shù)f(x)=$(\begin{array}{l}{x}&{4}\\{1}&{x}\end{array})$,直線l:kx-y+3-2k=0,若直線l與函數(shù)f(x)的圖象有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-1,$\frac{2}{3}$)∪($\frac{3}{4}$,1)B.(-1,$\frac{17}{24}$)C.(-1,$\frac{17}{24}$)∪($\frac{3}{4}$,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知關(guān)于x的方程${({\frac{1}{2}})^x}-{x^{\frac{1}{3}}}=0$,那么在下列區(qū)間中含有方程的根的是( 。
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}前n項(xiàng)和Sn,且,令Sn=2an-2bn=log2an
(I)試求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${c_n}=\frac{b_n}{a_n}$,求證數(shù)列{cn}的前n項(xiàng)和Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知F是雙曲線$C:{x^2}-\frac{y^2}{8}=1$的右焦點(diǎn),P是C左支上一點(diǎn),$A({0,6\sqrt{6}})$,當(dāng)△APF周長(zhǎng)最小時(shí),點(diǎn)P的縱坐標(biāo)為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知中心在坐標(biāo)原點(diǎn)的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F (2,0)為其右焦點(diǎn).
(1)求橢圓C的方程和離心率e;
(2)若平行于OA的直線l與橢圓有公共點(diǎn),求直線l在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若復(fù)數(shù)z滿足(1-i)z=1-5i,則復(fù)數(shù)z的虛部為-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案