分析 (1)由題意c=2,設(shè)橢圓方程,將A代入橢圓方程,即可求得a的值,即可求得橢圓方程及離心率;
(2)設(shè)直線方程,代入橢圓方程,由韋達(dá)定理△≥0,即可求得b的取值范圍.
解答 解:(1)由橢圓的焦點(diǎn)在x軸上,c=2,設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-4}=1$,
代入點(diǎn)A(2,3),$\frac{4}{{a}^{2}}+\frac{9}{{a}^{2}-4}=1$
解得:a2=16,則b2=12,離心率e=$\frac{c}{a}$=$\frac{1}{2}$
∴橢圓方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$,離心率$\frac{1}{2}$;
(2)設(shè)直線l的方程y=$\frac{3}{2}$x+b,
則$\left\{\begin{array}{l}{y=\frac{3}{2}x+b}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,整理得:3x2+3bx+b2-12=0,
由△=(3b)2-12(b2-12)≥0,解得:-4$\sqrt{3}$≤b≤4$\sqrt{3}$,
直線l在y軸上的截距的取值范圍[-4$\sqrt{3}$,4$\sqrt{3}$].
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查判別式法的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,α∥β則m∥β | B. | m∥α,m∥n則n∥α | C. | 若m∥α,n⊥α則m⊥n | D. | 若m∥α,n?α則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 3 | C. | 27 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com