11.設命題p:實數(shù)x滿足(x-a)(x-3a)<0,其中a>0,命題q:實數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實數(shù)x的取值范圍.
(2)若?p是?q的充分不必要條件,求實數(shù)a的取值范圍.

分析 (1)命題p:實數(shù)x滿足(x-a)(x-3a)<0,其中a>0,解得a<x<3a.若a=1,則p中:1<x<3,由p且q為真,可得p與q都為真,即可得出.
(2)若?p是?q的充分不必要條件,可得q是p 的充分不必要條件,即可得出.

解答 解:(1)命題p:實數(shù)x滿足(x-a)(x-3a)<0,其中a>0,解得a<x<3a.
命題q中:實數(shù)x滿足 2<x≤3.
若a=1,則p中:1<x<3,
∵p且q為真,∴$\left\{\begin{array}{l}{1<x<3}\\{2<x≤3}\end{array}\right.$,解得2<x<3,
故所求x∈(2,3).
(2)若?p是?q的充分不必要條件,
則q是p 的充分不必要條件,
∴$\left\{\begin{array}{l}{a≤2}\\{3a>3}\end{array}\right.$,解得1<a≤2,
∴a的取值范圍是(1,2].

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,已知⊙A和⊙B的公共弦CD與AB相交于點E,CB與⊙A相切,⊙B半徑為2,AE=3.
(Ⅰ)求弦CD的長;
(Ⅱ)⊙B與線段AB相交于點F,延長CF與⊙A相交于點G,求CG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,D為BC邊中點,G為AD中點,直線EF過G與邊AB、AC相交于E、F,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,則m+n的最小值為( 。
A.4B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.從3件正品,2件次品中隨機抽取出兩件,則恰好是1件正品,1件次品的概率是( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知等差數(shù)列{an}中,a2=7,a4=15,則前5項的和S5=(  )
A.55B.65C.95D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1•a3=5
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{a_n}{2^n}$,Sn為數(shù)列{bn}的前n項和,證明:Sn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知F1、F2為橢圓C:$\frac{{2{x^2}}}{9}+\frac{{2{y^2}}}{5}$=1的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2( 。
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E是BC的中點,F(xiàn)是PA上的一個動點.
(1)求證:CF⊥BD;
(2)求二面角D-PE-A的大小的正弦值;
(3)若直線EF與平面CDE所成角的正切值為$\frac{1}{\sqrt{21}}$,求AF的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知橢圓和雙曲線有共同的焦點F1,F(xiàn)2,P是它們的一個交點,且∠F1PF2=$\frac{π}{3}$,記橢圓和雙曲線的離心率分別為e1,e2,則當$\frac{1}{{{e_1}{e_2}}}$取最大值時,e1,e2的值分別是( 。
A.$\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{2}$B.$\frac{1}{2},\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{3}}}{3},\sqrt{6}$D.$\frac{{\sqrt{2}}}{4},\sqrt{3}$

查看答案和解析>>

同步練習冊答案