A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\sqrt{13}$ | C. | $\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$ | D. | $\sqrt{5}$ |
分析 設出P的坐標,根據(jù)B是線段PF的三等分點,建立向量關系,求出P的坐標,利用代入法求出a,c的關系即可得到結論.
解答 解:∵F(-c,0),∴設B(0,b),
B是線段PF的三等分點,
∴$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{FP}$或$\overrightarrow{BP}$=$\frac{2}{3}$$\overrightarrow{FP}$,
設P(x,y),
若$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{FP}$,
則(x,y-b)=$\frac{1}{3}$(x+c,y),
則$\left\{\begin{array}{l}{x=\frac{1}{3}x+\frac{1}{3}c}\\{y-b=\frac{1}{3}y}\end{array}\right.$,
即$\left\{\begin{array}{l}{x=\frac{c}{2}}\\{y=\frac{3b}{2}}\end{array}\right.$,即P($\frac{c}{2}$,$\frac{3b}{2}$),
∵P($\frac{c}{2}$,$\frac{3b}{2}$)在雙曲線上,
∴$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{9^{2}}{4^{2}}$=1,
即$\frac{{c}^{2}}{{a}^{2}}$=13,則e2=13,e=$\sqrt{13}$,
或$\overrightarrow{BP}$=$\frac{2}{3}$$\overrightarrow{FP}$,則(x,y-b)=$\frac{2}{3}$(x+c,y),
則$\left\{\begin{array}{l}{x=\frac{2}{3}x+\frac{2}{3}c}\\{y-b=\frac{2}{3}y}\end{array}\right.$,
即$\left\{\begin{array}{l}{x=2c}\\{y=3b}\end{array}\right.$,即P(2c,3b),
∵P(2c,3b)在雙曲線上,
∴$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{9^{2}}{^{2}}$=1,
即4•$\frac{{c}^{2}}{{a}^{2}}$=10,則e2=$\frac{5}{2}$,e=$\sqrt{\frac{5}{2}}$=$\frac{{\sqrt{10}}}{2}$,
綜上C的離心率為$\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$,
故選:C
點評 本題主要考查雙曲線離心率的計算,利用點的關系求出B的坐標是解決本題的關鍵.注意要進行分類討論.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$或$\frac{3π}{4}$ | B. | $\frac{π}{3}$或$\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 64 | D. | 128 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com