分析 (1)得到-3,-2是方程$\frac{2x}{{x}^{2}+6}$-k=0的根,將x=-2或-3代入方程求出k的值即可;
(2)根據(jù)函數(shù)的單調(diào)性求出f(x)的最小值,從而求出k的范圍即可.
解答 解:(1)f(x)=$\frac{2x}{{x}^{2}+6}$,若f(x)>k的解集為{x|x<-3或x>-2},
則-3,-2是方程$\frac{2x}{{x}^{2}+6}$-k=0的根,
解得:k=-$\frac{2}{5}$;
(2)若對任意x<0,f(x)≥t恒成立,
即若對任意x<0,f(x)min≥t,f′(x)=$\frac{-{2x}^{2}+12}{{{(x}^{2}+6)}^{2}}$,
令f′(x)>0,解得:-$\sqrt{6}$<x<0,
令f′(x)<0,解得:x<-$\sqrt{6}$,
故f(x)在(-∞,-$\sqrt{6}$)遞減,在(-$\sqrt{6}$,0)遞增,
∴f(x)min=f(-$\sqrt{6}$)=-$\frac{\sqrt{6}}{6}$,
∴t≤-$\frac{\sqrt{6}}{6}$.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 47,48 | B. | 47,49 | C. | 49,50 | D. | 50,49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$π | B. | π | C. | 2π | D. | 3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com