2010年上海世博會是世博會歷史上首次在發(fā)展中國家舉辦的綜合性世博會,上海世博會的主題是:城市,讓生活更美好,大會期間,某超市的世博會吉祥物海寶在過去的近20天內的銷售量(件)與價格(元)均為時間t(天)的函數(shù),且銷售量近似滿足g(t)=80-2t(件),價格近似滿足f(t)=20-
1
2
|t-10|(元).
(1)試寫出“海寶”的日銷售額y與時間t(0<t≤20)的函數(shù)表達式;
(2)求“海寶”的日銷售額y的最大值與最小值.
考點:函數(shù)模型的選擇與應用,函數(shù)的最值及其幾何意義
專題:計算題,應用題,函數(shù)的性質及應用
分析:(1)由題意,y=g(t)•f(t)=(80-2t)(20-
1
2
|t-10|)=
-t2+10t+1200,0<t≤10
t2-90t+2000,10<t≤20
;
(2)分別求當0<t≤10時,當10<t≤20時的最值,從而求最值.
解答: 解:(1)由題意,
y=g(t)•f(t)
=(80-2t)(20-
1
2
|t-10|)
=
-t2+10t+1200,0<t≤10
t2-90t+2000,10<t≤20
;
(2)當0<t≤10時,
y=-t2+10t+1200在t=5時有最大值y=1225,
當t=10時有最小值1200;
當10<t≤20時,
y=t2-90t+2000在(10,20]上是減函數(shù),
當t=20時有最小值600;
y<100-900+2000=1200;
故“海寶”的日銷售額y的最大值為1225元,
最小值為600元.
點評:本題考查了分段函數(shù)在實際問題中的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,離心率為e,半長軸長為a.
(1)若焦距長2c=2,且1、e、
1
4
成等比數(shù)列,求橢圓C的方程;
(2)在(1)的條件下,直線l:ex-y+a=0與x軸、y軸分別相交于M、N 兩點,p是直線l與橢圓C的一個交點,且
MP
MN
,求λ的值;
(3)若不考慮(1),在(2)中,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,長方體ABCD-A1B1C1D1的側面BCC1B1是正方形,E是AB的中點,AB=
2
BC.
(1)求證:BD1⊥平面B1CE;
(2)求二面角C-B1E-A1的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10名學生站成一排,要給每名學生發(fā)一頂紅色、黃色、藍色的帽子,要求每種顏色的帽子都要有,且相鄰的兩名學生帽子的顏色不同,則滿足要求的發(fā)帽子的方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且4a-b≥0,若函數(shù)f(x)=
1
3
ax3+x2+bx無極值,則
b-2
a+1
的取值范圍為(  )
A、[2
3
-4,4]
B、[2
3
-4,+∞]
C、[-2
3
-4,4]
D、[-2
3
-4,+∞]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)在x=-1時取得最小值-3,且滿足f(2)=
15
4

(1)求函數(shù)y=f(x)的解析式;
(2)當函數(shù)y=f(x)在[-2m+3,-m+2](m>1)上的最小值是-
9
4
時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有編號為1、2、3號的3個信箱和編號為A、B、C、D的4封信.
(1)若從4封信中任選3封分別投入3個信箱,其中A恰好投入1號信箱的概率是多少?
(2)若4封信可以任意投入信箱,投完為止,其中A恰好投入1號或2號信箱的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(2ωx+
π
3
)+m(m>0,ω>0)的圖象y軸右側的第一個最大值、最小值點分別是P(x0,2+m)和Q(x0+
π
2
,-2+m).
(1)若f(x)在[-
π
4
,
π
6
]上最大值與最小值的和為5,求m的值;
(2)在(1)的條件下,用“五點法”作出f(x)在[-
π
3
,
6
]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=sinx的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得圖象向左平移
π
4
個單位,所得函數(shù)為g(x).
(1)求函數(shù)g(x)的最小正周期和單調遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[
π
8
,
4
]
上的最小值和最大值,并求出取最值時x的值.

查看答案和解析>>

同步練習冊答案