設(shè)i、j分別是直角坐標(biāo)系x軸、y軸上的單位向量,若在同一直線上有三點A、B、C,且=-2i+mj,=ni+j,=5i-j,,求實數(shù)m、n的值.
【答案】分析:利用向量垂直的充要條件列出方程①,利用向量共線的充要條件列出方程②,解①②得當(dāng)m,n的值.
解答:解:∵,
∴-2n+m=0①
∵A、B、C在同一直線上,
∴存在實數(shù)λ使,=-=7i+[-(m+1)j]=-=(n+2)i+(1-m)j,
∴7=λ(n+2)
m+1=λ(m-1)
消去λ得mn-5m+n+9=0②
由①得m=2n代入②解得
m=6,n=3;或m=3,n=
點評:本題考查向量垂直的充要條件、考查向量共線的充要條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且
OA
=-2i+mj,
OB
=ni+j,
OC
=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且
OA
=-2i+mj,
OB
=ni+j,
OC
=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《8.1 平面向量》2013年高考數(shù)學(xué)優(yōu)化訓(xùn)練(文科)(解析版) 題型:解答題

設(shè)i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):平面向量(解析版) 題型:解答題

設(shè)i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):4.1 平面向量的概念及其線性運算(解析版) 題型:解答題

設(shè)i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數(shù)m、n的值.

查看答案和解析>>

同步練習(xí)冊答案