3.已知函數(shù)f(x)=x2+ax,若f(f(x))的最小值與f(x)的最小值相等,則a的取值范圍是{a|a≥2或a≤0}.

分析 首先這個函數(shù)f(x)的圖象是一個開口向上的拋物線,也就是說它的值域就是大于等于它的最小值.y=f(f(x))它的圖象只能是函數(shù)f(x)上的一段,而要這兩個函數(shù)的值域相同,則函數(shù)  y必須要能夠取到最小值,這樣問題就簡單了,就只需要f(x)的最小值小于-$\frac{a}{2}$.

解答 解:由于f(x)=x2+ax,x∈R.則當(dāng)x=-$\frac{a}{2}$時,f(x)min=-$\frac{{a}^{2}}{4}$,
又函數(shù)y=f(f(x))的最小值與函數(shù)y=f(x)的最小值相等,
則函數(shù)y必須要能夠取到最小值,即-$\frac{{a}^{2}}{4}$≤-$\frac{a}{2}$,
得到a≤0或a≥2,
故答案為:{a|a≥2或a≤0}.

點評 本題考查函數(shù)值域的簡單應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.二項式(x$\sqrt{x}$-$\frac{1}{x}$)5的展開式中常數(shù)項為-10.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y=4x2,過點P(0,2)作直線l,交拋物線于A,B兩點,O為坐標(biāo)原點,
(Ⅰ)求證:$\overrightarrow{OA}•\overrightarrow{OB}$為定值;
(Ⅱ)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等比數(shù)列{an}中,an>0,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3與a5的等比中項為2,求數(shù)列{an}的通項公式an=${({\frac{1}{2}})^{n-5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=mx2+4mx+3>0在R上恒成立,則實數(shù)m的取值范圍是( 。
A.[0,$\frac{2}{3}$)B.[0,$\frac{3}{4}$)C.($\frac{3}{4}$,+∞)D.(0,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x-y-1=0的傾斜角與其在y軸上的截距分別是( 。
A.135°,1B.45°,-1C.45°,1D.135°,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y=-$\frac{1}{8}{x}^{2}$的準(zhǔn)線方程是( 。
A.x=$\frac{1}{32}$B.x=$\frac{1}{2}$C.y=2D.y=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,則tan2β等于(  )
A.$\frac{1}{7}$B.$\frac{4}{3}$C.-$\frac{1}{7}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x,y∈R,下列不等式成立的是(  )
A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|

查看答案和解析>>

同步練習(xí)冊答案