分析 (Ⅰ)設過點P(0,2)的直線l:y=kx+2,聯(lián)立直線與拋物線方程,令A(x1,y1),B(x2,y2),利用韋達定理,求解$\overrightarrow{OA}•\overrightarrow{OB}$為定值.
(Ⅱ)由(Ⅰ)知,利用弦長公式以及原點到直線l的距離$d=\frac{2}{{\sqrt{1+{k^2}}}}$,表示三角形的面積,然后求解最小值即可.
解答 證明:(Ⅰ)設過點P(0,2)的直線l:y=kx+2,
由$\left\{{\begin{array}{l}{y=kx+2}\\{y=4{x^2}}\end{array}}\right.$得,4x2-kx-2=0,
令A(x1,y1),B(x2,y2),∴${x_1}+{x_2}=\frac{k}{4},{x_1}{x_2}=-\frac{1}{2}$,y1y2=k2x1x2+2k(x1+x2)+4=4
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=4-$\frac{1}{2}$=$\frac{7}{2}$為定值.------(6分)
解:(Ⅱ)由(Ⅰ)知,$|AB|=|{x_1}-{x_2}|\sqrt{1+{k^2}}=\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}\sqrt{1+{k^2}}$=$\frac{1}{4}\sqrt{{k^2}+1}\sqrt{32+{k^2}}$,
原點到直線l的距離$d=\frac{2}{{\sqrt{1+{k^2}}}}$
∴${S_{△AOB}}=\frac{1}{2}×|AB|×d=4\sqrt{{k^2}+2}≥\sqrt{2}$
當k=0時,三角形AOB的面積最小,最小值是$\sqrt{2}$------(12分)
點評 本題考查拋物線的簡單性質(zhì)的應用,直線與拋物線的位置關系,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等 | |
B. | 為調(diào)查高三年級的240名學生完成作業(yè)所需的時間,由教務處對高三年級的學生進行編號,從001到240抽取學號最后一位為3的學生進行調(diào)查,則這種抽樣方法為分層抽樣 | |
C. | “x≠1”是“x2-3x+2≠0”的充分不必要條件 | |
D. | 命題p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定為:“?x∈R,x2-3x+2≥0” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com