已知f(x)=(a>0且a≠1),,試比較的大小,并結(jié)合圖象對所得到的結(jié)論給予幾何解釋.

答案:
解析:

  幾何意義:如圖,設(shè),,則表示線段處的函數(shù)值,即圖中的數(shù)量,表示梯形的中位線的數(shù)量.本題系討論當(dāng)a取值不同時有向線段數(shù)量的大小關(guān)系.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a
b
-1
,其中向量
a
=(sin2x,2cosx),
b
=(
3
,cosx)
,(x∈R).
(1) 求f(x)的最小正周期和最小值;
(2) 在△ABC中,角A、B、C的對邊分別為a、b、c,若f(
A
4
)=
3
,a=2
13
,b=8,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(
3
cos2ωx,sinωx),
b
=(1,cosωx)
(其中ω>0),已知f(x)=
a
b
-
3
2
且f(x)最小正周期為2π
(1)求ω的值及y=f(x)的表達式;
(2)設(shè)a∈(
π
6
,
3
),β∈(-
6
,-
π
3
)
,f(α)=
3
5
,f(β)=-
4
5
求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a-bx
x-a-1
的圖象的對稱中心是(3,-1),則f(sinx)的值域為
[-
3
4
,-
1
2
]
[-
3
4
,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a-
22x+1
(x∈R)
是奇函數(shù),則lna=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)已知f(x)=
a+4x,x≥1
x2-1
x-1
,x<1
,在x=1處連續(xù),則常數(shù)a=
-2
-2

查看答案和解析>>

同步練習(xí)冊答案