5.若拋物線x2=ay(a≠0)在x=1處的切線傾斜角為45°,則該拋物線的準(zhǔn)線方程為y=-$\frac{1}{2}$.

分析 將拋物線轉(zhuǎn)化為函數(shù)形式,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義以及切線斜率和導(dǎo)數(shù)之間的關(guān)系,求出a,即可求出拋物線的準(zhǔn)線方程.

解答 解:由x2=ay可得y=$\frac{1}{a}$x2,求導(dǎo)可得y′=$\frac{2}{a}$x,
∵切線的傾斜角為45°,
∴tan45°=1,
故切線斜率為$\frac{2}{a}$=1,
解得a=2,
則拋物線方程為x2=2y,準(zhǔn)線方程為y=-$\frac{1}{2}$,
故答案為:y=-$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查拋物線的幾何性質(zhì)的求解,利用導(dǎo)數(shù)的幾何意義,求出切線斜率是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若關(guān)于x的方程|logax|=m(a>0且a≠1,m>0)有兩個(gè)不相等的實(shí)數(shù)根x1,x2,則x1x2與1的大小關(guān)系是(  )
A.x1x2>1B.x1x2<1C.x1x2=1D.無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.等比數(shù)列{an}中,a5=6,則數(shù)列{log6an}的前9項(xiàng)和等于( 。
A.6B.9C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-n+1,則該數(shù)列的通項(xiàng)公式為${a_n}=\left\{{\begin{array}{l}{3,}&{n=1}\\{6n+2,}&{n≥2}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),且f′(x)=x2+2x-8,則函數(shù)y=f(x+2)的單調(diào)遞減區(qū)間為( 。
A.(-2,4)B.(-6,0)C.(-4,2)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,最小值是4的函數(shù)是(  )
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.$y={log_3}x+\frac{4}{{{{log}_3}x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.對(duì)于函數(shù)f(x)=x${\;}^{\frac{1}{2}}}$定義域內(nèi)的任意x1,x2且x1≠x2,給出下列結(jié)論:
(1)f(x1+x2)=f(x1)•f(x2
(2)f(x1•x2)=f(x1)•f(x2
(3)$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0
(4)f($\frac{{{x_1}+{x_2}}}{2}$)>$\frac{{f({x_1})+f({x_2})}}{2}$
其中正確結(jié)論為:(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.復(fù)數(shù)z=1+2i,那么$\frac{1}{z}$等于( 。
A.$\frac{\sqrt{5}}{5}$+$\frac{2\sqrt{5}}{5}$iB.$\frac{\sqrt{5}}{5}$-$\frac{2\sqrt{5}}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15..已知函數(shù)f(x)=cosx(sinx+cosx)-0.5.
(1)若0<β<90°,sinβ=0.6,求f(β).
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案