已知三棱錐P-ABC中PA=a,PB=b,PC=c,側(cè)棱PA,PB,PC上各有點(diǎn).求證:

答案:
解析:

        

  證 : 以A為頂點(diǎn),PBC為底,過⊥平面PBC于,過A作AD⊥平面PBC于D,則P,,D共線,且AD∶=a∶,設(shè)∠BPC=θ,則


提示:

注 本題結(jié)論對于解類似本題的一類填空題和選擇題是十分有效的.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波萬里國際學(xué)校高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=,N為AB上一點(diǎn),AB=4AN, M,S分別為PB,BC的中點(diǎn).

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(遼寧卷)理科數(shù)學(xué) 題型:解答題

已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年重慶市高二下學(xué)期第二次月考理科數(shù)學(xué) 題型:選擇題

已知三棱錐P-ABC中,PA、PB、PC兩兩垂直,PA=PB=2PC=2a,且三棱錐外接球的表面積為S=9π,則實(shí)數(shù)a的值為(  )

A.            B.2              C. 1                D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年重慶市高二下學(xué)期第二次月考文科數(shù)學(xué) 題型:選擇題

已知三棱錐P-ABC中,PA、PB、PC兩兩垂直,PA=PB=2PC=2a,且三棱錐外接球的表面積為S=9π,則實(shí)數(shù)a的值為(  )

A.        B.2         C.       D. 1

 

查看答案和解析>>

同步練習(xí)冊答案