【題目】同時(shí)具有性質(zhì):“① 最小正周期是;② 圖象關(guān)于直線對(duì)稱;③ 在上是單調(diào)遞增函數(shù)”的一個(gè)函數(shù)可以是( )
A.B.
C.D.
【答案】D
【解析】
利用正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),逐一檢驗(yàn),可得結(jié)論.
A,對(duì)于y=cos(),它的周期為4π,故不滿足條件.
B,對(duì)于y=sin(2x),在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上不是單調(diào)遞增函數(shù),故不滿足條件.
C,對(duì)于y=cos(2x),當(dāng)x時(shí),函數(shù)y,不是最值,故不滿足②它的圖象關(guān)于直線x對(duì)稱,故不滿足條件.
D,對(duì)于y=sin(2x),它的周期為π,當(dāng)x時(shí),函數(shù)y=1,是函數(shù)的最大值,滿足它的圖象關(guān)于直線x對(duì)稱;且在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),滿足條件.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為維護(hù)交通秩序,防范電動(dòng)自行車被盜,天津市公安局決定,開展二輪電動(dòng)自行車免費(fèi)登記、上牌照工作.電動(dòng)自行車牌照分免費(fèi)和收費(fèi)(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個(gè)不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進(jìn)行電話訪談.
(Ⅰ)應(yīng)從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?
(Ⅱ)設(shè)從甲小區(qū)抽取的居民為,丙小區(qū)抽取的居民為.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機(jī)抽取2人接受問卷調(diào)查.
(。┰囉盟o字母列舉出所有可能的抽取結(jié)果;
(ⅱ)設(shè)為事件“抽取的2人來自不同的小區(qū)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)求函數(shù)的定義域,并求出當(dāng)時(shí),常數(shù)的值;
(2)在(1)的條件下,判斷函數(shù)在的單調(diào)性,并用單調(diào)性定義證明;
(3)設(shè),若方程有實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年五月最受七中學(xué)子期待的學(xué)生活動(dòng)莫過于學(xué)生節(jié),在每屆學(xué)生節(jié)活動(dòng)中,著七中校服的布偶“七中熊”尤其受同學(xué)和老師歡迎.已知學(xué)生會(huì)將在學(xué)生節(jié)當(dāng)天售賣“七中熊”,并且會(huì)將所獲得利潤全部捐獻(xiàn)于公益組織.為了讓更多同學(xué)知曉,學(xué)生會(huì)宣傳部需要前期在學(xué)校張貼海報(bào)宣傳,成本為250元,并且當(dāng)學(xué)生會(huì)向廠家訂制只“七中熊”時(shí),需另投入成本,(元),.通過市場分析, 學(xué)生會(huì)訂制的“七中熊”能全部售完.若學(xué)生節(jié)當(dāng)天,每只“七中熊”售價(jià)為70元,則當(dāng)銷量為______只時(shí),學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額會(huì)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正項(xiàng)數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.
(1)若,求數(shù)列的所有項(xiàng)的和;
(2)若,求的最大值;
(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,角,,為的內(nèi)角,其所對(duì)的邊分別為,,.
(1)當(dāng)取得最大值時(shí),求角的大小;
(2)在(1)成立的條件下,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,若an2﹣an﹣12=p,(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列“的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②{(﹣1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位響應(yīng)黨中央“精準(zhǔn)扶貧”號(hào)召,對(duì)某村6戶貧困戶中的甲戶進(jìn)行定點(diǎn)幫扶,每年跟蹤調(diào)查統(tǒng)計(jì)一次,從2015年1月1日至2018年12月底統(tǒng)計(jì)數(shù)據(jù)如下(人均年純收入):
年份 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 |
收入(百元) | 25 | 28 | 32 | 35 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)甲戶在2019年能否脫貧;(國家規(guī)定2019年脫貧標(biāo)準(zhǔn):人均年純收入為3747元)
(2)2019年初,根據(jù)扶貧辦的統(tǒng)計(jì)知,該村剩余5戶貧困戶中還有2戶沒有脫貧,現(xiàn)從這5戶中抽取2戶,求至少有一戶沒有脫貧的概率.
參考公式:,,其中,為數(shù),的平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com