分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,可得 φ=$\frac{5π}{12}$-$\frac{kπ}{2}$,k∈Z,從而求得φ的最小值.
解答 解:把函數(shù)y=sin(2x+$\frac{4π}{3}$)的圖象向右平移φ(φ>0)個單位,所得圖象對應的解析式為 y=sin[2(x-φ)+$\frac{4π}{3}$]=sin(2x+$\frac{4π}{3}$-2φ),
再根據(jù)所得圖象關于y軸對稱,可得$\frac{4π}{3}$-2φ=kπ+$\frac{π}{2}$,k∈Z,即 φ=$\frac{5π}{12}$-$\frac{kπ}{2}$,k∈Z,
則φ的最小值為$\frac{5π}{12}$,
故答案為:$\frac{5π}{12}$.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m∥α,n∥α,則m∥n | B. | 若m∥α,m∥β,則α∥β | ||
C. | 若m∥n,m∥α,n?α,則n∥α | D. | 若m∥α,α∥β,則m∥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{6}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{7}}{7}$) | B. | ($\frac{\sqrt{7}}{7}$,1) | C. | ($\frac{\sqrt{5}}{5}$,1) | D. | (0,$\frac{\sqrt{5}}{5}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com