分析 (Ⅰ)由復(fù)數(shù)$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,求出$|\frac{1}{z}|$和$(\overline{z})^{2}$,代入$|\frac{1}{z}|+{(\overline z)^2}$計(jì)算得答案;
(Ⅱ)把z1,$\overline{{z}_{2}}$代入${z_1}+\overline{z_2}$化簡(jiǎn),再結(jié)合已知條件即可求出a的值.
解答 解:(Ⅰ)∵$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,∴$\overline{z}=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$.
∴$|\frac{1}{z}|=|-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i|=\sqrt{{{(-\frac{1}{2})}^2}+{{(-\frac{{\sqrt{3}}}{2})}^2}}=1$.
${(\overline z)^2}={(-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i)^2}=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,
∴$|\frac{1}{z}|+{(\overline z)^2}$=$1-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i=\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$;
(Ⅱ)${z_1}+{\overline z_2}=2a+1+(1+{a^2})i+1-a-(3-a)i=a+2+({a^2}+a-2)i$
∵${z_1}+{\overline z_2}$是實(shí)數(shù),∴a2+a-2=0,解得a=1,或a=-2,
故a=1,或a=-2.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的混合運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{19}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{2}$ | B. | $\sqrt{17}$ | C. | $\sqrt{10}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1350 kg | B. | 大于 1350 kg | C. | 小于1350kg | D. | 以上都不對(duì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com