7.函數(shù)f(x)=$\frac{2x+1}{{x}^{2}+2}$在區(qū)間[0,2]上的最大值是1.

分析 求導(dǎo)f′(x)=$\frac{2({x}^{2}+2)-2x(2x+1)}{({x}^{2}+2)^{2}}$=$\frac{-2(x+2)(x-1)}{({x}^{2}+2)^{2}}$;從而可判斷f(x)在[0,1)上是增函數(shù),在(1,2]是減函數(shù);從而求最大值即可.

解答 解:∵f(x)=$\frac{2x+1}{{x}^{2}+2}$,
∴f′(x)=$\frac{2({x}^{2}+2)-2x(2x+1)}{({x}^{2}+2)^{2}}$
=$\frac{-2(x+2)(x-1)}{({x}^{2}+2)^{2}}$;
故x∈[0,1)時(shí),f′(x)>0,
x∈(1,2]時(shí),f′(x)<0;
故f(x)在[0,1)上是增函數(shù),在(1,2]是減函數(shù);
故fmax(x)=f(1)=$\frac{3}{3}$=1;
故答案為:1.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及化簡(jiǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)x,y,z為正數(shù),xyz=1,求3x+4y+5z的最小值,以及x,y,z為何值時(shí),3x+4y+5z達(dá)到最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\sqrt{x-1}$的定義域是( 。
A.[1,+∞)B.(1,+∞)C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x2+y2+x+$\sqrt{3}$y+tanθ=0(-$\frac{π}{2}$<θ<$\frac{π}{2}$)表示圓,則θ的取值范圍為$(-\frac{π}{2},\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若不等式|x+1|+|x-m|<5(m∈Z)的解集為A,且3∈A.
(1)求m的值
(2)若a,b,c∈R,且滿足a+2b+2c=m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x3+ln(x+$\sqrt{{x}^{2}+1}$)滿足f(1+a)+1+ln($\sqrt{2}$+1)<0,若實(shí)數(shù)a的取值范圍是(-∞,b),則b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC中,cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,則內(nèi)角C等于( 。
A.$\frac{3π}{4}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+4x+4
(Ⅰ)若x∈[-4,a],求f(x)的值域;
(Ⅱ)定義在[a,b]上的函數(shù)f(x),g(x)如果滿足,對(duì)任意x∈[a,b],都有f(x)≤g(x)成立,則稱f(x)是g(x)在[a,b]上的弱函數(shù),已知f(x+a)是g(x)=4x在x∈[1,t]上的弱函數(shù),求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.${∫}_{0}^{1}$x2dx的值為( 。
A.$\frac{1}{3}$B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案