A. | $\frac{3π}{4}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
分析 利用同角三角函數(shù)間的關(guān)系式可求得sinA=$\sqrt{1-co{s}^{2}A}$,sinB=$\sqrt{1-co{s}^{2}B}$,利用誘導(dǎo)公式與兩角和的余弦函數(shù)公式即可求得cosC的值,結(jié)合C的范圍即可得解.
解答 解:△ABC中,∵cosA=$\frac{2\sqrt{5}}{5}$>0,cosB=$\frac{3\sqrt{10}}{10}$>0,
∴A、B均為銳角,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{5}}{5}$,同理可得sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{10}}{10}$,
∴cosC=cos[π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$+$\frac{\sqrt{5}}{5}$×$\frac{\sqrt{10}}{10}$=-$\frac{\sqrt{2}}{2}$,
∵0<C<π,
∴可得:C=$\frac{3π}{4}$.
故選:A.
點(diǎn)評(píng) 本題考查同角三角函數(shù)間的關(guān)系式,考查誘導(dǎo)公式與兩角和的余弦函數(shù)公式的應(yīng)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com