已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖
(1)求a、b間關(guān)系;
(2)求|PQ|的最小值;
(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.
分析:(1)根據(jù)△OQP為直角三角形,且|PQ|=|PA|,利用勾股定理可得a、b間關(guān)系.
(2)根據(jù)P在直線l:2x+y-3=0上,所以|PQ|min=|PA|min,為A到直線l的距離,由此求得|PQ|min的值.
(3)半徑最小時(shí)為與圓O外切的情形,而這些半徑的最小值為圓O到直線l的距離減去圓O的半徑,圓心P為過原點(diǎn)與l垂直的直線l′與l的交點(diǎn)P0,求得半徑r和P0的坐標(biāo),可得圓的方程.
解答:解:(1)連接OQ、OP,則△OQP為直角三角形,又|PQ|=|PA|,
所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.
(2)由(1)知,P在直線l:2x+y-3=0上,所以|PQ|min=|PA|min,為A到直線l的距離,
所以|PQ|min=
|2×2+1-3|
22+12
=
2
5
5

(3)以P為圓心的圓與圓O有公共點(diǎn),半徑最小時(shí)為與圓O外切的情形,
而這些半徑的最小值為圓O到直線l的距離減去圓O的半徑,
圓心P為過原點(diǎn)與l垂直的直線l′與l的交點(diǎn)P0,所以r=
3
22+12
-1=
3
5
5
-1,
又l′:x-2y=0,與l:2x+y-3=0聯(lián)立得P0
6
5
3
5
).
所以,所求圓的方程為(x-
6
5
2+(y-
3
5
2=(
3
5
5
-1)2
點(diǎn)評(píng):本題主要考查直線和圓、圓和圓的位置關(guān)系,點(diǎn)到直線的距離公式,求圓的標(biāo)準(zhǔn)方程,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案