點(diǎn)M的直角坐標(biāo)為,則它的球坐標(biāo)為( )
A. B.
C. D.
B
【解析】
試題分析:利用球坐標(biāo)系(r,θ,φ)與直角坐標(biāo)系(x,y,z)的轉(zhuǎn)換關(guān)系:x=rsinθcosφ,y=rsinθsinφ,z=rcosθ;反之,直角坐標(biāo)系(x,y,z)與球坐標(biāo)系(r,θ,φ)的轉(zhuǎn)換關(guān)系為:r=; φ=arctan(); θ=arccos();進(jìn)行轉(zhuǎn)換即得.
【解析】
設(shè)點(diǎn)M的球面坐標(biāo)系的形式為(r,φ,θ),r是球面半徑,φ為向量OA在xOy面上投影到X正方向夾角,θ為向量OA與z軸正方向夾角
所以r==2,容易知道φ=45°=
同時(shí)結(jié)合點(diǎn)M的直角坐標(biāo)為,
可知 tanθ==1,所以 θ=
所以球面坐標(biāo)為
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 1.2絕對(duì)值不等式練習(xí)卷(解析版) 題型:填空題
(2014•重慶一模)若函數(shù)的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 1.1不等式練習(xí)卷(解析版) 題型:選擇題
(2014•鶴城區(qū)二模)已知a,b為正實(shí)數(shù),函數(shù)y=2aex+b的圖象經(jīng)過點(diǎn)(O,1),則的最小值為( )
A.3+2 B.3﹣2 C.4 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-4 1.4柱坐標(biāo)系與球坐標(biāo)系簡(jiǎn)介(解析版) 題型:填空題
把點(diǎn)M的球坐標(biāo)(8,,化為直角坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-4 1.4柱坐標(biāo)系與球坐標(biāo)系簡(jiǎn)介(解析版) 題型:填空題
點(diǎn)M的球坐標(biāo)為(4,,),則M的直角坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-4 1.4柱坐標(biāo)系與球坐標(biāo)系簡(jiǎn)介(解析版) 題型:選擇題
已知點(diǎn)P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 4.2特征向量的應(yīng)用練習(xí)卷(解析版) 題型:解答題
選修4﹣2:矩陣與變換
已知二階矩陣A=,矩陣A屬于特征值λ1=﹣1的一個(gè)特征向量為α1=,屬于特征值λ2=4的一個(gè)特征向量為α2=.求矩陣A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 3.3逆矩陣與二元一次方程組(解析版) 題型:填空題
已知二元一次方程組的增廣矩陣是(),若該方程組無(wú)解,則實(shí)數(shù)m的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 3.2二階行列式與逆矩陣練習(xí)卷(解析版) 題型:選擇題
若規(guī)定則不等式log的解集是( )
A.(1,2) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com