17.二項(xiàng)式(a-$\frac{1}{2a}$)9展開式中,a3項(xiàng)的系數(shù)為( 。
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{21}{2}$D.$\frac{21}{2}$

分析 利用通項(xiàng)公式即可得出.

解答 解:通項(xiàng)公式Tr+1=${∁}_{9}^{r}$a9-r$•(-\frac{1}{2a})^{r}$=$(-\frac{1}{2})^{r}$${∁}_{9}^{r}$a9-2r,
令9-2r=3,解得r=3.
∴T4=$-\frac{1}{8}×{∁}_{9}^{3}$a3=-$\frac{21}{2}$a3
∴a3項(xiàng)的系數(shù)為-$\frac{21}{2}$.
故選:C.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.-120°角所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知球面上有A,B,C三點(diǎn),如果$|AB|=|AC|=|BC|=2\sqrt{3}$,且球心到平面ABC的距離為1,則該球的體積為( 。
A.$\frac{20}{3}π$B.$\frac{{20\sqrt{5}}}{3}π$C.$\frac{{15\sqrt{5}}}{3}π$D.$\frac{{10\sqrt{5}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.${∫}_{1}^{2}$($\sqrt{1-(x-1)^{2}}$)dx=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=cos2x+2$\sqrt{3}$sinxcosx-sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知3a=5b=A,且$\frac{1}{a}$+$\frac{1}$=2,則A的值是( 。
A.15B.$\sqrt{15}$C.±$\sqrt{15}$D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓C:x2+y2+2x+2y-2=0,l:x-y+2=0,求圓心到直線l的距離$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)隨機(jī)變量ξ~N(0,1),已知P(ξ<-1.96)=0.025,則P(|ξ|<1.96)=(  )
A.0.025B.0.050C.0.950D.0.975

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F(xiàn)是CD上的點(diǎn)且DF=$\frac{1}{2}$AB,PH為△PAD中AD邊上的高.
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)若PH=1,AD=$\sqrt{2}$,F(xiàn)C=2,求三棱錐E-BCF的體積.

查看答案和解析>>

同步練習(xí)冊答案