復(fù)數(shù)
1+2i
1-i
=(  )
A、-
1
2
-
3
2
i
B、
1
2
+
3
2
i
C、-
1
2
+
3
2
i
D、
1
2
-
3
2
i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.
解答: 解:復(fù)數(shù)
1+2i
1-i
=
(1+2i)(1+i)
(1-i)(1+i)
=
-1+3i
2
=-
1
2
+
3
2
i

故選:C.
點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人進(jìn)行羽毛球比賽,比賽采取五局三勝制,約定無論哪一方先勝三局則比賽結(jié)束,假定甲每局比賽獲勝的概率均為
2
3
,則乙以3:1的比分獲勝的概率為( 。
A、
8
27
B、
2
27
C、
32
81
D、
64
81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-3
+
1
8-x
的定義域?yàn)榧螦,B={x∈Z,3<x<11},C={x∈R|x<a或x>a+1}.
(1)求A,(∁RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:?x∈(1,
5
2
),函數(shù)g(x)=log2(tx2+2x-2)恒有意義,若?p為假命題,則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x>4},B={x|-6<x<6}
(1)求A∩B;
(2)求∁RB;
(3)定義A-B={x|x∈A,x∉B},求A-B,A-(A-B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠A=30°,∠C=90°,D是AB邊上的一點(diǎn),以BD為直徑的⊙O與AC相切于點(diǎn)E.若BC=6,則DE的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與函數(shù)y=
1
x
+
1
1-x
有相同定義域的是( 。
A、f(x)=lnx+1g(1-x)
B、f(x)=
x
+
1-x
C、f(x)=
1
x(x-1)
D、f(x)=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圖中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且DF=CF=
2
,AF=2BF.若CE與圓相切,且CE=
7
2
,則BE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+n-1.
(1)求證{an}為等差數(shù)列,并求其通項(xiàng)公式;
(2)若存在二次函數(shù)f(x)=ax2(a≠0)使數(shù)列{
f(n)
anan+1
}的前n項(xiàng)和Tn=
2n2+2n
2n+1
,求f(x).

查看答案和解析>>

同步練習(xí)冊答案