已知函數(shù)f(x)=
log2x,x>1
3x,x≤1
,則f(1)+f(2)=( �。�
A、1B、4C、9D、12
考點:函數(shù)的值
專題:函數(shù)的性質及應用
分析:由1≤1,得f(1)=31;由2>1,得f(2)=log22,由此能求出f(1)+f(2).
解答: 解:∵f(x)=
log2x,x>1
3x,x≤1
,
∴f(1)+f(2)=3+log22=4.
故選:B.
點評:本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意分段函數(shù)的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線(m-1)x+y+1=0與直線3x+(m+1)y+2m-1=0平行,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線y=a|x|與直線y=2x+a(a>0)有兩個公共點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={2,a2+9a+3,6},A={2,|a+3|},∁UA={3},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)y=loga(4-ax)在區(qū)間[0,2]上單調遞減,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3(ax+b)的部分圖象如圖所示.
(1)求f(x)的解析與定義域;
(2)設F(x)=log3
x
9
)•log3(3x),求F(x)在[
1
9
,9]上的最大值及其相對應的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差為d,前n項和為Sn,且S3•S5+30=0,
(1)若d=3,求數(shù)列{an}的通項公式
(2)若a1∈R,求實數(shù)d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x(|x|-1)的圖象是( �。�
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知g(x)=1-2x,f[g(x)]=
1+x2
x2
(x≠0),則f(
1
2
)=
 

查看答案和解析>>

同步練習冊答案