某校高三第一次模考中,對總分450分(含450分)以上的成績進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,若650~700分?jǐn)?shù)段的人數(shù)為90,則500~550分?jǐn)?shù)段的人數(shù)為
 
人.
考點:頻率分布直方圖
專題:計算題,概率與統(tǒng)計
分析:由圖可知90~100分?jǐn)?shù)段和130~140分?jǐn)?shù)段的頻率,而130~140分?jǐn)?shù)段的人數(shù)為90,那么90~100分?jǐn)?shù)段的人數(shù)為
90
0.05
×0.45
人,求出即可.
解答: 解:由頻率分布直方圖可知,500~550分?jǐn)?shù)段和650~700分?jǐn)?shù)段的頻率分別為0.45和0.05,
又由于650~700分?jǐn)?shù)段的人數(shù)為90,則總?cè)藬?shù)為
90
0.05
人,
所以500~550分?jǐn)?shù)段的人數(shù)為
90
0.05
×0.45
即為810人.
故答案為:810,
點評:本題考查統(tǒng)計中的頻率分布直方圖,關(guān)鍵是建立等價關(guān)系,即各段人數(shù)與頻率的比都是總?cè)藬?shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且滿足a2=3,a4+a5+a6=18,數(shù)列{bn}滿足b1=1,bn+1=2bn+1
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=an•bn,試求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在不等式組
y≥x
x≥0
x+y≤2
所確定的平面區(qū)域內(nèi)任取一點P(x,y),則點P的坐標(biāo)滿足x2+y2≤2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1棱長為1,點M是BC1的中點,P是BB1一動點,則(AP+MP)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有
 

①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.
④一組數(shù)據(jù)的方差越大,說明這組數(shù)據(jù)的波動越大.
⑤向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinβ=
3
5
π
2
<β<π),且sin(α+β)=cosα,則sin2α+sinαcosα-2cos2α等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+2+(-1)nan=2,記Sn是數(shù)列{an}的前n項和,則S60=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。
A、
1
4
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,矩形O′A′B′C′是水平放置一個平面圖形的直觀圖,其中O′A′=6,O′C′=2,則原圖形是( 。
A、正方形B、矩形
C、菱形D、一般的平行四邊形

查看答案和解析>>

同步練習(xí)冊答案