分析 (Ⅰ)連接AB1、A1D、BD,設(shè)AB1交A1B于點(diǎn)O,連OD,推導(dǎo)出△AA1D≌△ABD,從而DO⊥A1B,由菱形的性質(zhì)知AO⊥A1B,從而A1B⊥平面ADO,進(jìn)而A1B⊥AD,再由AD∥BC,能證明A1B⊥BC.
(Ⅱ)分別以射線、射線、射線為軸、軸、軸的正方向建立空間直角坐標(biāo)系,利用向量法能求出平面DCC1D1與平面ABB1A1所成銳二面角的大。
解答 證明:(Ⅰ)連接AB1、A1D、BD,設(shè)AB1交A1B于點(diǎn)O,
連OD,如圖所示.
由AA1=AB,∠DAB=∠DAA1,可得△AA1D≌△ABD,
所以A1D=BD,
由于O是線段A1B的中點(diǎn),所以DO⊥A1B,
又根據(jù)菱形的性質(zhì)知AO⊥A1B,所以A1B⊥平面ADO,
所以A1B⊥AD,又因?yàn)锳D∥BC,所以A1B⊥BC.…(6分)
解:(Ⅱ)由(Ⅰ)知A1B⊥AB1,
又由題意知DO⊥平面ABB1A1,
故可分別以射線、射線、射線為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示.
設(shè)AD=AB=3BC=3a,
由∠A1AB=60°知$|OB|=\frac{3a}{2}$,|OA|=|OB1|=$\frac{3\sqrt{3}a}{2}$,
所以|OD|=$\sqrt{|AD{|}^{2}-|OA{|}^{2}}$=$\frac{3a}{2}$,
從而A(0,-$\frac{3\sqrt{3}}{2}a$,0),B($\frac{3}{2}a$,0,0),B1(0,$\frac{3\sqrt{3}}{2}a$,0),D(0,0,$\frac{3}{2}a$),
所以$\overrightarrow{C{C_1}}=\overrightarrow{B{B_1}}=(-\frac{3}{2}a,\frac{{3\sqrt{3}}}{2}a,0)$.
由$\overrightarrow{BC}$=$\frac{1}{3}\overrightarrow{AD}$,得$C(\frac{3}{2}a,\frac{{\sqrt{3}}}{2}a,\frac{1}{2}a)$,所以$\overrightarrow{DC}=(\frac{3}{2}a,\frac{{\sqrt{3}}}{2}a,-a)$.
設(shè)平面DCC1D1的一個(gè)法向量為$\overrightarrow{m}$=(x0,y0,z0),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{C{C}_{1}}=0}\\{\overrightarrow{m}•\overrightarrow{DC}=0}\end{array}\right.$,得$\left\{{\begin{array}{l}{-\frac{3}{2}{x_0}+\frac{{3\sqrt{3}}}{2}{y_0}=0}\\{\frac{3}{2}{x_0}+\frac{{\sqrt{3}}}{2}{y_0}-{z_0}=0}\end{array}}\right.$,
取y0=1,則${x_0}=\sqrt{3}$,${z_0}=2\sqrt{3}$,所以$\overrightarrow{m}$=($\sqrt{3},1,2\sqrt{3}$).
又平面ABB1A1的法向量為$\overrightarrow{OD}=(0,0,\frac{3}{2}a)$,
所以$cos<\overrightarrow{OD},\overrightarrow m>=\frac{{\overrightarrow{OD}•\overrightarrow m}}{{|\overrightarrow{OD}|•|\overrightarrow m|}}=\frac{{3\sqrt{3}a}}{{\frac{3}{2}a×4}}=\frac{{\sqrt{3}}}{2}$.
故平面DCC1D1與平面ABB1A1所成銳二面角的大小為$\frac{π}{6}$.…(12分)
點(diǎn)評(píng) 本題考查異面直線垂直的證明,考查二面角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | $\sqrt{19}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等邊三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com