17.已知雙曲線Г:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為M,第二象限的點(diǎn)P,Q在雙曲線的漸近線y=-$\frac{a}$x上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ為等邊三角形,則雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{2}$x.

分析 由雙曲線的一條漸近線方程為y=-$\frac{a}$x,P的坐標(biāo)為(m,-$\frac{a}$m),由$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,可得Q(3m,-$\frac{3bm}{a}$),運(yùn)用中點(diǎn)坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,運(yùn)用等邊三角形的高為底邊的$\frac{\sqrt{3}}{2}$,化簡(jiǎn)整理,可得a,b的關(guān)系式,即可得到所求雙曲線的漸近線的方程.

解答 解:由雙曲線的一條漸近線方程為y=-$\frac{a}$x,
P的坐標(biāo)為(m,-$\frac{a}$m),由$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,可得:
Q(3m,-$\frac{3bm}{a}$),
P,Q的中點(diǎn)為H(2m,-$\frac{2bm}{a}$),M(-a,0),
由MH⊥PQ,可得$\frac{-\frac{2bm}{a}}{2m+a}$=$\frac{a}$,
解得m=-$\frac{{a}^{3}}{2{c}^{2}}$,
可得|PQ|=$\sqrt{4{m}^{2}+\frac{4^{2}{m}^{2}}{{a}^{2}}}$=$\frac{{a}^{2}}{c}$,
由等邊三角形MPQ可得,
|MH|=$\frac{\sqrt{3}}{2}$|PQ|,
即有$\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}$•$\frac{{a}^{2}}{c}$,
即有b=$\frac{\sqrt{3}}{2}$a,
則雙曲線的漸近線方程為y=±$\frac{a}$x,
即為y=±$\frac{\sqrt{3}}{2}$x.
故答案為:y=±$\frac{\sqrt{3}}{2}$x.

點(diǎn)評(píng) 本題考查雙曲線的漸近線方程的求法,考查向量共線的坐標(biāo)表示,以及點(diǎn)到直線的距離公式和兩直線垂直的條件,以及化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,D為邊BC上一點(diǎn),CD=2BD,∠ADB=120°,AD=2,且△ADC的面積為$\sqrt{3}$.
(Ⅰ)求sinB的值;
(Ⅱ)求cos(2B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=2,BC=1,P是腰AB上的動(dòng)點(diǎn),則|$\overrightarrow{PC}$+$\overrightarrow{PD}$|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)m,n,且點(diǎn)(1,1)在不等式組$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-2mx≤2}\\{ny≥1}\\{\;}\end{array}\right.$表示的平面區(qū)域內(nèi),則m+2n的取值范圍為[$\frac{3}{2}$,4],m2+n2的取值范圍為[1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.己知$\overrightarrow{a}$=(sinx,cos2x-sin2x),$\overrightarrow$=(cosx,$\frac{\sqrt{3}}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求證:a,b,c成等比數(shù)列;
(2)若$\overrightarrow{BA}•\overrightarrow{BC}$=4,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右頂點(diǎn)分別為A、B,虛軸的端點(diǎn)在以原點(diǎn)為圓心,|AB|為直徑的圓上,P為該雙曲線上一點(diǎn),若直線PB的斜率為$\sqrt{2}$,則直線PA的斜率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若數(shù)列{an}滿足:a1=0,a2=3且(n-1)an+1=(n+1)an-n十1(n∈N*,n≥2),數(shù)列{bn}滿足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,則數(shù)列{bn}的最大項(xiàng)為第6項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=2sin(4x-$\frac{2π}{3}$)的圖象(  )
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于x軸對(duì)稱
C.關(guān)于直線x=-$\frac{π}{6}$對(duì)稱D.關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案