分析 (1)利用數(shù)列{an}的前n項(xiàng)和2Sn+an=1再寫一式,兩式相減可得數(shù)列{an}是以$\frac{1}{3}$為首項(xiàng),$\frac{1}{3}$為公比的等比數(shù)列,從而可得數(shù)列{an}的通項(xiàng)公式;利用等差數(shù)列{bn}中,b1=1,b2=2可得{bn}的通項(xiàng)公式;
(2)cn=an•bn=$\frac{n}{{3}^{n}}$.利用錯(cuò)位相減法,可得結(jié)論.
解答 解:(1)∵數(shù)列{an}的前n項(xiàng)和2Sn+an=1,∴n≥2時(shí),2Sn-1+an-1=1,
∴兩式相減可得3an=an-1,
∵n=1時(shí),2S1+a1=1,∴a1=$\frac{1}{3}$,
∴數(shù)列{an}是以$\frac{1}{3}$為首項(xiàng),$\frac{1}{3}$為公比的等比數(shù)列,
∴an=$(\frac{1}{3})^{n}$;
∵等差數(shù)列{bn}中,b1=1,b2=2,
∴bn=n;
(2)cn=an•bn=$\frac{n}{{3}^{n}}$.
∴Tn=$\frac{1}{3}+\frac{2}{{3}^{2}}$+…+$\frac{n}{{3}^{n}}$
∴$\frac{1}{3}$Tn=$\frac{1}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{n}{{3}^{n+1}}$
兩式相減可得$\frac{2}{3}$Tn=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$-$\frac{n}{{3}^{n+1}}$=$\frac{1}{2}$-$\frac{2n+3}{2×{3}^{n+1}}$
∴Tn=$\frac{3}{4}-\frac{2n+3}{4×{3}^{n}}$<$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)與求和,考查錯(cuò)位相減法,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 相切 | ||
C. | 相離 | D. | 以上三個(gè)選項(xiàng)均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若$|{\overrightarrow a}|$=$|{\overrightarrow b}|$,則$\overrightarrow a$=$\overrightarrow b$ | |
B. | 若$\overrightarrow a$=$\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$是平行向量 | |
C. | 若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,則$\overrightarrow a$>$\overrightarrow b$ | |
D. | 若$\overrightarrow a$與$\overrightarrow b$不相等,則向量$\overrightarrow a$與$\overrightarrow b$是不共線向量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -378 | B. | 62 | C. | 72 | D. | 112 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a${\;}^{-\frac{3}{5}}$ | B. | a${\;}^{\frac{5}{3}}$ | C. | -a${\;}^{\frac{3}{5}}$ | D. | -${a}^{\frac{5}{3}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com