【題目】已知直線l過(guò)點(diǎn)P(0,2),斜率為k,圓Q:x2+y2﹣12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個(gè)不同的點(diǎn),問(wèn)是否存在常數(shù)k,使得+共線?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】解:(1)將圓的方程化簡(jiǎn),得:(x﹣6)2+y2=4,圓心Q(6,0),半徑r=2.
設(shè)直線l的方程為:y=kx+2,故圓心到直線l的距離d==
因?yàn)橹本l和圓相切,故d=r,即=2,解得k=0或k=﹣
所以,直線l的方程為y=2或3x+4y﹣8=0.
(2)將直線l的方程和圓的方程聯(lián)立,消y得:(1+k2)x2+4(k﹣3)x+36=0,
因?yàn)橹本l和圓相交,故△=[4(k﹣3)]2﹣4×36×(1+k2)>0,解得﹣<k<0.
設(shè)A(x1 , y1)、B(x2 , y2),則有:x1+x2=;x1x2=
而y1+y2=kx1+2+kx2+2=k(x1+x2)+4,+=(x1+x2 , y1+y2),=(6,﹣2).
因?yàn)?/span>+共線,所以﹣2×(x1+x2)=6×(y1+y2).
即(1+3k)(x1+x2)+12=0,代入得(1+3k)[﹣]+12=0,解得k=﹣
又因?yàn)椹?/span><k<0,所以沒(méi)有符合條件的常數(shù)k.
【解析】(1)確定圓的圓心與半徑,設(shè)出直線方程,利用直線l和圓相切,建立方程,即可求得結(jié)論;
(2)將直線l的方程和圓的方程聯(lián)立,利用韋達(dá)定理,及+共線,結(jié)合根的判別式,可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上, ,

(1)證明: ;

(2) 求平面所成的銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求過(guò)點(diǎn)且與曲線相切的直線方程;

(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個(gè)極值點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C過(guò)點(diǎn)(1,2)和(2,1),且圓心在直線x+y﹣4=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)若一束光線l自點(diǎn)A(﹣3,3)發(fā)出,射到x軸上,被x軸反射到圓C上,若反射點(diǎn)為M(a,0),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為,點(diǎn)在橢圓.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從1開(kāi)始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個(gè)三角形框架在圖中上下或左右移動(dòng),使每次恰有九個(gè)數(shù)在此三角形內(nèi),則這九個(gè)數(shù)的和可以為( )

A.2097 B.2112 C.2012 D.2090

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.已知等腰梯形ABCD中,AB∥CD,AD=AB=CD,M是的CD的中點(diǎn).N是AC與BM的交點(diǎn),將△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求證:AB⊥PN.
(Ⅱ)若E為PA的中點(diǎn).求證:EN∥平面PDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn),直線,點(diǎn)在直線上移動(dòng), 是線段軸的交點(diǎn), .

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)直線軸相交于點(diǎn),過(guò)的直線交軌跡兩點(diǎn),

試探究點(diǎn)與以為直徑的圓的位置關(guān)系,并加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案