17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}+6{x}^{2}+9x+3,x≤0}\\{alnx,x>0}\end{array}\right.$在[-2,2]上的最小值為-1,則實(shí)數(shù)a的取值范圍是[-$\frac{1}{ln2}$,0].

分析 利用導(dǎo)數(shù)判斷f(x)在[-2,0]上的單調(diào)性,求出f(x)在[-2,0]上的最小值,得出f(x)在(0,2]的最小值的范圍,討論a的符號(hào)得出f(x)在(0,2]上的單調(diào)性,根據(jù)最小值的范圍列不等式求出a的范圍.

解答 解:x≤0時(shí),f′(x)=3x2+12x+9,
令f′(x)=0得x=-1或x=-3.
∴當(dāng)-2<x<-1時(shí),f′(x)<0,當(dāng)-1<x<0時(shí),f′(x)>0,
∴f(x)在[-2,-1]上單調(diào)遞減,在(-1,0]上單調(diào)遞增,
∴f(x)在[-2,0]上的最小值為f(-1)=-1.
∵f(x)在[-2,2]上的最小值為-1,
∴f(x)在(0,2]上的最小值大于或等于-1.
若a=0,則f(x)=0在(0,2]上恒成立,符合題意;
若a>0,則f(x)=alnx在(0,2]上單調(diào)遞增,且x→0時(shí),f(x)→-∞,不符合題意;
若a<0,則f(x)=alnx(0,2]上單調(diào)遞減,f(x)的最小值為f(2)=aln2≥-1,
解得:-$\frac{1}{ln2}$≤a<0,
綜上,-$\frac{1}{ln2}$≤a≤0.
故答案為:[-$\frac{1}{ln2}$,0].

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性判斷與最值計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為(1,0),一個(gè)頂點(diǎn)為$(0,\sqrt{3})$,若在此橢圓上存在不同兩點(diǎn)關(guān)于直線y=2x+m對(duì)稱,則m的取值范圍是( 。
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($-\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{13}}}{13}$)C.($-\frac{1}{2},\frac{1}{2}$)D.($-\frac{{\sqrt{15}}}{13},\frac{{\sqrt{15}}}{13}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)A(-$\sqrt{3}$,0)和點(diǎn)B($\sqrt{3}$,0),動(dòng)點(diǎn)M到A點(diǎn)的距離是4,線段MB的垂直平分線交線段MA于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線l過點(diǎn)D(1,0)且與橢圓交于E,F(xiàn)兩點(diǎn),求△OEF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.命題:?x∈A,均有x∈B的否定是?x0∈A,則x0∉B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}滿足a1+a2=8,a2+a4=12,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.現(xiàn)有金牌5枚,銀牌3枚,銅牌2枚,從中任取2枚獎(jiǎng)牌,試求在所取得的獎(jiǎng)牌中發(fā)現(xiàn)有一枚是金牌,另一枚也是金牌的概率為( 。
A.$\frac{2}{9}$B.$\frac{4}{9}$C.$\frac{2}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“m>0”是“復(fù)數(shù)z=m+$\frac{2}{-1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于第四象限”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+4cosα}\\{y=2+4sinα}\end{array}\right.$(α為參數(shù)),直線l過定點(diǎn)P(3,5),傾斜角為$\frac{π}{3}$,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)試寫出曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.等差數(shù)列{an}中,已知a4+a6=22,則數(shù)列{an}的前9項(xiàng)和S9的值為99.

查看答案和解析>>

同步練習(xí)冊(cè)答案