A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($-\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{13}}}{13}$) | C. | ($-\frac{1}{2},\frac{1}{2}$) | D. | ($-\frac{{\sqrt{15}}}{13},\frac{{\sqrt{15}}}{13}$) |
分析 由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a$>b\$>0),可得c=1,b=$\sqrt{3}$,a2=b2+c2.解出即可得出橢圓的標(biāo)準(zhǔn)方程.設(shè)與直線y=2x+m垂直的直線方程為y=-$\frac{1}{2}$x+t,此直線與橢圓相交于點(diǎn)A(x1,y1),B(x2,y2).線段AB的中點(diǎn)為M(x0,y0).與橢圓方程聯(lián)立化為:x2-tx+t2-3=0,可得△>0,解得t范圍.利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式即可得出.
解答 解:由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a$>b\$>0),則c=1,b=$\sqrt{3}$,a2=b2+c2=4.
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
設(shè)與直線y=2x+m垂直的直線方程為y=-$\frac{1}{2}$x+t,此直線與橢圓相交于點(diǎn)A(x1,y1),B(x2,y2).
線段AB的中點(diǎn)為M(x0,y0).
聯(lián)立$\left\{\begin{array}{l}{y=-\frac{1}{2}x+t}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化為:x2-tx+t2-3=0,
△=t2-4(t2-3)>0,解得-2<t<2(*)
∴x1+x2=t=2x0,解得x0=$\frac{1}{2}t$.
y0=$-\frac{1}{2}{x}_{0}$+t=$\frac{3}{4}$t.
∴M$(\frac{1}{2}t,\frac{3}{4}t)$,代入直線y=2x+m,可得:$\frac{3}{4}t$=t+m,
可得t=-4m.
代入(*)可得:-2<-4m<2,解得$-\frac{1}{2}<m$<$\frac{1}{2}$.
∴m的取值范圍是$(-\frac{1}{2},\frac{1}{2})$.
故選:C.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2或0 | B. | 2 | C. | 2或2 | D. | 2或10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.158 8 | B. | 0.158 7 | C. | 0.158 6 | D. | 0.158 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | B. | $\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | C. | $\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | D. | -$\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com