【題目】橢圓E: + =1(a>b>0)的焦點(diǎn)到直線x﹣3y=0的距離為 ,離心率為 ,拋物線G:y2=2px(p>0)的焦點(diǎn)與橢圓E的焦點(diǎn)重合;斜率為k的直線l過G的焦點(diǎn)與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學(xué)常數(shù)λ,使 為常數(shù),若存在,求λ的值,若不存在,說明理由.
【答案】
(1)解:設(shè)E、G的公共焦點(diǎn)為F(c,0),由題意得 , .
聯(lián)立解得 .
所以橢圓E: ,拋物線G:y2=8x.
(2)解:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
直線l的方程為y=k(x﹣2),與橢圓E的方程聯(lián)立 ,得(1+5k2)x2﹣20k2x+20k2﹣5=0
△=400k4﹣20(5k2+1)(4k2﹣1)=20(k2+1)>0.
= .
直線l的方程為y=k(x﹣2),
與拋物線G的方程聯(lián)立 ,得k2x2﹣(4k2+8)x+4k2=0.
.
.
= .
要使 為常數(shù),則20+ =4,得 .
故存在 ,使 為常數(shù).
【解析】(1)由點(diǎn)到直線的距離公式列式求出c的值,結(jié)合土偶眼離心率求出a的值,再由拋物線G:y2=2px(p>0)的焦點(diǎn)與橢圓E的焦點(diǎn)重合即可求得橢圓方程和拋物線方程;(2)依次射出A,B,C,D四點(diǎn)的坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線方程和圓錐曲線方程,利用根與系數(shù)關(guān)系分別寫出A,B兩點(diǎn)橫坐標(biāo)的和與積,寫出C,D兩點(diǎn)橫坐標(biāo)的和與積,利用弦長公式求出AB和CD的長度,代入 后可求出使 為常數(shù)的λ的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3200元時,可全部租出。當(dāng)每輛車的月租金每增加50元時(租金增減為50元的整數(shù)倍),未租出的車將會增加一輛。租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元。
(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?
(2)設(shè)租金為(3200+50x)元/輛(x∈N),用x表示租賃公司的月收益y(單位:元)。
(3)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 ,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=4 .
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1) 求實(shí)數(shù)的值;
(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;
(3) 若方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合、為的一個等濃二分劃(即,,且.記集合中所有數(shù)的積為,集合中所有數(shù)的積為,稱為的等濃二分劃的特征數(shù).證明:
(1)集合的等濃二分劃的特征數(shù)一定為合數(shù);
(2)若等濃二分劃的特征數(shù)不為2的倍數(shù),則該特征數(shù)為的倍數(shù).
注:有限集合的元素個數(shù)簡記為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com