Px,y)在圓C:上運動,點A(-2,2),B(-2,-2)是平面上兩點,則的最大值________.

7+2

解析試題分析:由題意可知,它表示圓C:上的點Px,y)與的距離的平方減4,所以最大值為
考點:本小題主要考查向量的數(shù)量積,圓的一般方程,距離公式.
點評:解決本小題的關(guān)鍵是將問題轉(zhuǎn)化為圓上的點與的距離的平方減4,這種轉(zhuǎn)化問題的方法在解數(shù)學(xué)題中經(jīng)常用到,要靈活應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在圓C上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(x,y)在圓C:x2+y2-2x-2y+1=0上運動,點A(-2,2),B(-2,-2)是平面上兩點,則
AP
BP
的最大值
7+2
10
7+2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年黑龍江省高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為

(I)判斷直線與圓C的位置關(guān)系;

(Ⅱ)若點P(x,y)在圓C上,求x +y的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟寧市高二12月質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:填空題

Px,y)在圓C:上運動,點A(-2,2),B(-2,-2)是平面上兩點,則的最大值________.

 

查看答案和解析>>

同步練習(xí)冊答案