已知圓(x-2)2+(y-1)2=25被直線l:y=kx+b截得的弦長為8,則圓心到直線l的距離為(  )
A、6B、5C、4D、3
考點:直線與圓相交的性質(zhì)
專題:計算題,直線與圓
分析:根據(jù)圓(x-2)2+(y-1)2=25被直線l:y=kx+b截得的弦長為8,利用垂徑定理可得結(jié)論.
解答: 解:∵圓(x-2)2+(y-1)2=25被直線l:y=kx+b截得的弦長為8,
∴根據(jù)垂徑定理可得,圓心到直線l的距離為
52-42
=3.
故選:D.
點評:本題考查直線與圓的位置關(guān)系,考查垂徑定理的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3x,則f(
3
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,有下列結(jié)論:
①若R為△ABC外接圓的半徑,則S△ABC=2R2sinAsinBsinC;
②sinA+sinB>sinC,sinA-sinB<sinC
③若a2<b2+c2,則△ABC為銳角三角形;
④若(a+c)(a-c)=b(b+c),則A為120°;
其中結(jié)論正確的是
 
.(填上全部正確的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e
1
1
x
dx+
2
-2
4-x2
dx
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-2cos2x,則函數(shù)y=f(x)的圖象的一個對稱中心為( 。
A、(
π
8
,1)
B、(
π
8
,-1)
C、(
π
4
,1)
D、(
π
4
,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式
(x+m)(x-n)
x-p
≥0的解為-2≤x<5或x≥5
2
,則點M(mn,p)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-1≤0},B={x|x≤0},則A∩(∁RB)=( 。
A、{x|0≤x≤1}
B、{x|0<x≤1}
C、{x|x>0}
D、{x|x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a=
e
1
2
x
dx,則函數(shù)f(x)=2sinx十a(chǎn)cosx的圖象的一條對稱軸方程為( 。
A、x=0
B、x=-
4
C、-
π
4
D、x=-
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,且a=1,c=
2
,cosC=
3
4

(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案