【題目】已知函數(shù)f(x)=ax3+bx2+cx+d在x=1處取極小值,x=3處取極大值,且函數(shù)圖象在(2,f(2))處的切線與直線x-5y=0平行.
(1)求實數(shù)abc的值;
(2)設(shè)函數(shù)f(x)=0有三個不相等的實數(shù)根,求d的取值范圍.
【答案】(1);(2)
【解析】
(1)對函數(shù)求導(dǎo)可得,,由題意可得,所以,.聯(lián)立可求,,
(2)由(1)可得,由和分別是函數(shù)的極小值點和極大值點,判斷可得方程有三個不相等的實數(shù)根的充要條件為,代入可求.
(1),函數(shù)圖象在的切線與直線x-5y=0平行,
①
由題意可知,1和3為方程的兩根,所以:
②
③
由①②③解得.
(2)由(1)得,
x=1和x=3分別是函數(shù)f(x)的極小值點和極大值點,
當(dāng)時,;當(dāng)時,
所以方程f(x)=0有三個不相等的實數(shù)根的充要條件為:,
即,解得
所以d的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),是上的動點,點滿足,點的軌跡為曲線.
(Ⅰ)求的普通方程;
(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線與交于,兩點,交軸于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四面體ABCD的棱長為2,球O與四面體的面ABC和面DBC都相切,其切點分別在△ABC和△DBC內(nèi)(含邊界),且球O與棱AD相切.
(1)證明:球O的球心在棱AD的中垂面上;
(2)求球O的半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(I)證明:當(dāng)時,對任意實數(shù),直線總是曲線的切線;
(Ⅱ)若存在實數(shù),使得對任意且,都有,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com