6.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2,cosC=-$\frac{1}{4}$,3sinA=2sinB,則c=4.

分析 由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理結(jié)合已知即可得解.

解答 解:∵3sinA=2sinB,
∴由正弦定理可得:3a=2b,
∵a=2,
∴可解得b=3,
又∵cosC=-$\frac{1}{4}$,
∴由余弦定理可得:c2=a2+b2-2abcosC=4+9-2×$2×3×(-\frac{1}{4})$=16,
∴解得:c=4.
故答案為:4.

點(diǎn)評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè) a為實(shí)數(shù),函數(shù) f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范圍;
(2)討論 f(x)的單調(diào)性;
(3)當(dāng)a≥2 時,討論f(x)+$\frac{4}{x}$ 在區(qū)間 (0,+∞)內(nèi)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“x>1”是“$lo{g_{\frac{1}{2}}}$(x+2)<0”的(  )
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,a1=3,an+1an+λan+1+μan2=0(n∈N+
(Ⅰ)若λ=0,μ=-2,求數(shù)列{an}的通項公式;
(Ⅱ)若λ=$\frac{1}{k_0}$(k0∈N+,k0≥2),μ=-1,證明:2+$\frac{1}{{3{k_0}+1}}$<${a}_{{k}_{0}+1}$<2+$\frac{1}{{2{k_0}+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.$\frac{3}{4}$B.$\frac{5}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小周期和最小值;
(Ⅱ)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象.當(dāng)x∈$[{\frac{π}{2},π}]$時,求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某食品保鮮時間y(單位:小時)與儲藏溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b (e=2.718…為自然對數(shù)的底數(shù),k,b為常數(shù)).若該食品在0℃的保鮮時間是192小時,在22℃的保鮮時間是48小時,則該食品在33℃的保鮮時間是( 。
A.16小時B.20小時C.24小時D.28小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到如圖2中△A1BE的位置,得到四棱錐A1-BCDE.

(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當(dāng)平面A1BE⊥平面BCDE時,四棱錐A1-BCDE的體積為36$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點(diǎn).
(1)求證:GF∥平面ADE;
(2)求平面AEF與平面BEC所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案