18.某食品保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b (e=2.718…為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)).若該食品在0℃的保鮮時(shí)間是192小時(shí),在22℃的保鮮時(shí)間是48小時(shí),則該食品在33℃的保鮮時(shí)間是( 。
A.16小時(shí)B.20小時(shí)C.24小時(shí)D.28小時(shí)

分析 由已知中保鮮時(shí)間與儲(chǔ)藏溫度是一種指數(shù)型關(guān)系,由已知構(gòu)造方程組求出ek,eb的值,運(yùn)用指數(shù)冪的運(yùn)算性質(zhì)求解e33k+b即可.

解答 解:y=ekx+b (e=2.718…為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)).
當(dāng)x=0時(shí),eb=192,
當(dāng)x=22時(shí)e22k+b=48,
∴e22k=$\frac{48}{192}$=$\frac{1}{4}$
e11k=$\frac{1}{2}$
eb=192
當(dāng)x=33時(shí),e33k+b=(ek33•(eb)=($\frac{1}{2}$)3×192=24
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)解析式的運(yùn)用,列出方程求解即可,注意整體求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四邊形ABCD為菱形,G為AC與BD的交點(diǎn),BE⊥平面ABCD.
(Ⅰ)證明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為$\frac{\sqrt{6}}{3}$,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤(pán)中裝有10個(gè)粽子,其中豆沙粽2個(gè),肉粽3個(gè),白粽5個(gè),這三種粽子的外觀完全相同,從中任意選取3個(gè).
(Ⅰ)求三種粽子各取到1個(gè)的概率;
(Ⅱ)設(shè)X表示取到的豆沙粽個(gè)數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=2,cosC=-$\frac{1}{4}$,3sinA=2sinB,則c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如題圖,三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,點(diǎn)D、E在線段AC上,且AD=DE=EC=2,PD=PC=4,點(diǎn)F在線段AB上,且EF∥BC.
(Ⅰ)證明:AB⊥平面PFE.
(Ⅱ)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一輛小客車(chē)上有5名座位,其座號(hào)為1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位號(hào)分別為1,2,3,4,5.他們按照座位號(hào)順序先后上車(chē),乘客P1因身體原因沒(méi)有坐自己1號(hào)座位,這時(shí)司機(jī)要求余下的乘客按以下規(guī)則就坐:如果自己的座位空著,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在這5個(gè)座位的剩余空位中選擇座位.
(Ⅰ)若乘客P1坐到了3號(hào)座位,其他乘客按規(guī)則就座,則此時(shí)共有4種坐法.下表給出其中兩種坐法,請(qǐng)?zhí)钊胗嘞聝煞N坐法(將乘客就坐的座位號(hào)填入表中空格處)
乘客P1P2P3P4P5
座位號(hào)32145
32451
32415
32541
(Ⅱ)若乘客P1坐到了2號(hào)座位,其他乘客按規(guī)則就坐,求乘客P5坐到5號(hào)座位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)f(x)=x-sinx,則f(x)( 。
A.既是奇函數(shù)又是減函數(shù)B.既是奇函數(shù)又是增函數(shù)
C.是有零點(diǎn)的減函數(shù)D.是沒(méi)有零點(diǎn)的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的表面積等于( 。
A.8+2$\sqrt{2}$B.11+2$\sqrt{2}$C.14+2$\sqrt{2}$D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)x∈R,[x]表示不超過(guò)x的最大整數(shù).若存在實(shí)數(shù)t,使得[t]=1,[t2]=2,…,[tn]=n同時(shí)成立,則正整數(shù)n的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案