【題目】已知數(shù)列{an}的首項(xiàng)(a是常數(shù)),().
(1)求,,,并判斷是否存在實(shí)數(shù)a使成等差數(shù)列.若存在,求出的通項(xiàng)公式;若不存在,說明理由;
(2)設(shè),(),為數(shù)列的前n項(xiàng)和,求
【答案】(1)見解析(2)
【解析】分析:(1)由及().
可分別求出,,,由及可知無解,從而得到結(jié)論;
(2)由 可證得(n≥2)
∴
當(dāng)a=-1時(shí),可得
當(dāng)a≠-1時(shí), b1≠0,從第2項(xiàng)起是以2為公比的等比數(shù)列,時(shí)
當(dāng) 滿足上式. 則.可求.
詳解:
(1)∵
∴
若是等差數(shù)列,則 但由,得a=0,矛盾.
∴不可能是等差數(shù)列
(2)∵
∴ (n≥2)
∴
當(dāng)a=-1時(shí),(n≥3),得(n≥2)
∴
當(dāng)a≠-1時(shí), b1≠0,從第2項(xiàng)起是以2為公比的等比數(shù)列,時(shí)
當(dāng) 滿足上式,。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)家里訂了一份報(bào)紙,送報(bào)人每天都在早上6 : 207 : 40之間將報(bào)紙送達(dá),該同學(xué)需要早上7 : 008 : 00之間出發(fā)上學(xué),則這位同學(xué)在離開家之前能拿到報(bào)紙的概率為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位將舉辦慶典活動(dòng),要在廣場(chǎng)上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計(jì)要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場(chǎng)地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長(zhǎng)度和記為l.
(1)請(qǐng)將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問當(dāng)α為何值時(shí)l最。坎⑶笞钚≈担
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),G是PB的中點(diǎn).
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、為橢圓: ()的左、右焦點(diǎn),點(diǎn)為橢圓上一點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓是以為直徑的圓,直線: 與圓相切,并與橢圓交于不同的兩點(diǎn)、,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),數(shù)列滿足, .
(Ⅰ)當(dāng)時(shí),求證:數(shù)列為等差數(shù)列并求;
(Ⅱ)證明:對(duì)于一切正整數(shù),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),G是PB的中點(diǎn).
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,側(cè)面是邊長(zhǎng)為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓, 的圓心分別為c1,c2,,P為一個(gè)動(dòng)點(diǎn),且.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)是否存在過點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C,D,使得C1C=C1D?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com