【題目】關(guān)于直角∠AOB在平面α內(nèi)的平行射影有如下判斷:①可能是0°的角;②可能是銳角;③可能是直角;④可能是鈍角;⑤可能是180°的角,其中正確判斷的序號(hào)是.
【答案】①②③④⑤
【解析】設(shè)直角∠ABC所在平面為β,當(dāng)β與投影方向平行時(shí),直角∠AOB在平面α內(nèi)的平行射影為一條射線(xiàn)或一條直線(xiàn);當(dāng)β與投影方向不平行時(shí),直角∠AOB在平面α內(nèi)的平行射影為一個(gè)角,并且該角可以是銳角、直角或鈍角.因而①②③④⑤都對(duì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一個(gè)容量為N的總體抽取容量為n的樣本,當(dāng)選取簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時(shí),總體中每個(gè)個(gè)體被抽中的概率分別為P1 , P2 , P3 , 則( )
A.P1=P2<P3
B.P2=P3<P1
C.P1=P3<P2
D.P1=P2=P3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn , 則“|q|=1”是“S6=3S2”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD-A1B1C1D1中,四邊形A1ABB1在平面ABCD上的正射影是( )
A.四邊形ABCD
B.線(xiàn)段AB
C.△ABC
D.線(xiàn)段A1B1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書(shū)、數(shù),簡(jiǎn)稱(chēng)“六藝”.某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書(shū)、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽.現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐.規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為a,b,c(a>b>c,且a,b,c∈N*);選手最后得分為各場(chǎng)得分之和.在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列說(shuō)法正確的是( )
A.每場(chǎng)比賽第一名得分a為4
B.甲可能有一場(chǎng)比賽獲得第二名
C.乙有四場(chǎng)比賽獲得第三名
D.丙可能有一場(chǎng)比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查兩個(gè)變量x和y之間的線(xiàn)性關(guān)系,甲乙二人各自獨(dú)立地作了10次和15次試驗(yàn),并且利用線(xiàn)性回歸方法求得回歸直線(xiàn)分別為l1和l2 , 已知甲乙得到的試驗(yàn)數(shù)據(jù)中,變量x的平均值都是s,變量y的平均值都是t,則下面說(shuō)法正確的是( )
A.直線(xiàn)l1和l2必定重合
B.直線(xiàn)l1和l2一定有公共點(diǎn)(s,t)
C.直線(xiàn)l1∥l2
D.直線(xiàn)l1和l2相交,但交點(diǎn)不一定是(s,t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2++an(x﹣1)n , 且a0+a1++an=243,則(n﹣x)n展開(kāi)式的二次項(xiàng)系數(shù)和為( )
A.16
B.32
C.64
D.1024
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com