3.已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1
(2)面OC1D∥面AB1D1

分析 (1)線面平行,只需要證明線線平行.連接A1C1交于O1.連接AO1只需要證明AO1∥C1O即可.
(2)面面平行,只需要證明一個平面內(nèi)條的兩條相交直線與平面平行即可,B1D1∥BD,AO1∥C1O,
BD∩C1O=O,那么可證得面OC1D∥面AB1D1

解答 解:(1)由題意:幾何體ABCD-A1B1C1D1是正方體,O是底ABCD對角線的交點,
∴B1D1∥BD,
連接A1C1交于O1,連接AO1,
$A{O}_{=}^{∥}$C1O1
∴C1O1AO是平行四邊形.
∴AO1∥C1O.
∵AO1?面AB1D1
∴C1O∥面AB1D1;
得證.
(2).∵B1D1∥BD,即OD∥B1D1,
OD?面OC1D,
∴OD∥面AB1D1
由(1)可得C1O∥面AB1D1;
OD∩C1O=O,
所以:面OC1D∥面AB1D1

點評 本題考查了線面平行和面面平行的證明.線面平行轉(zhuǎn)化為線線平行;面面平行轉(zhuǎn)化為線面平行.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{x-1}$+$\sqrt{{2}^{x}-1}$的定義域是( 。
A.[0,+∞)B.(1,+∞)C.[0,1)D.[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(α)=$\frac{sin(π-α)cos(2π-α)}{{sin(\frac{π}{2}+α)tan(2π+α)}}$,求f($\frac{31π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別是角A,B,C的對邊,$\overrightarrow m$=(cosA+2sinA,-3sinA),$\overrightarrow n$=(sinA,cosA-2sinA),
(1)若$\overrightarrow m$∥$\overrightarrow n$且角A為銳角,求角A的大;
(2)在(1)的條件下,若cosB=$\frac{4}{5}$,c=7,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直三棱柱ABC-A1B1C1中,AC⊥BC,AC=2,BC=3,AA1=4,則此三棱柱的體積等于( 。
A.24B.12C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,且Sn=2n+1-2,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項an和bn;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn,并求滿足Tn<55的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)求函數(shù)f(x)=$\sqrt{x-1}$+$\frac{1}{2-x}$的定義域;
(2)求函數(shù)f(x)=$\frac{{2-{x^2}}}{{1+{x^2}}}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某體育場一角的看臺共有20排座位,且此看臺的座位是這樣排列的:第一排由2個座位,從第二排起每一排都比前一排多1個座位,記an表示第n排的座位數(shù).
(1)確定此看臺共有多少個座位;
(2)設(shè)數(shù)列{2n•an}的前20項的和為S20,求log2S20-log220的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)x,y滿足x-$\sqrt{x+1}$=$\sqrt{y+1}$-y,則x+y的取值范圍是[-$\sqrt{5}$+1,$\sqrt{5}$+1].

查看答案和解析>>

同步練習(xí)冊答案