【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會影響第二段生產(chǎn)成品的等級,具體見下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.

(Ⅰ)以各組的中間值估計為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設(shè)備?說明理由.

(參考數(shù)據(jù):,,

【答案】(Ⅰ);(Ⅱ)萬元;(Ⅲ)見解析.

【解析】

(Ⅰ)首先根據(jù)頻率分布直方圖確定各組的頻率及中間值,再根據(jù)樣本平均數(shù)的計算公式計算得到平均數(shù);(Ⅱ)首先確定隨機變量的所有可能取值,再根據(jù)獨立事件的概率公式求出分布列,最后利用數(shù)學(xué)期望公式求的數(shù)學(xué)期望;(Ⅲ)首先根據(jù)正態(tài)分布的性質(zhì)確定好等,然后類似第二問求出隨機變量的分布列及數(shù)學(xué)期望,最后根據(jù)隨機變量的數(shù)學(xué)期望的大小作決策.

(Ⅰ)平均值為: .

(Ⅱ)由頻率直方圖,第一段生產(chǎn)半成品質(zhì)量指標(biāo)

設(shè)生產(chǎn)一件產(chǎn)品的利潤為元,則

,

,

,

所以生產(chǎn)一件成品的平均利潤是元,

所以一條流水線一年能為該公司帶來利潤的估計值是萬元.

(Ⅲ),

設(shè)引入該設(shè)備后生產(chǎn)一件成品利潤為元,則

,

,

,

所以引入該設(shè)備后生產(chǎn)一件成品平均利潤為

元,

所以引入該設(shè)備后一條流水線一年能為該公司帶來利潤的估計值是萬元,

增加收入萬元,

綜上,應(yīng)該引入該設(shè)備.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰梯形ABCD中,,,E,FAB的三等分點,且分別沿DE、CF折起到A、B兩點重合,記為點P

證明:平面平面PEF;

,求PD與平面PFC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新車嗨翻天!首付3000元起開新車這就是毛豆新車網(wǎng)打出來的廣告語.某人看到廣告,興奮不已,計劃于20191月在該網(wǎng)站購買一輛某品牌汽車,他從當(dāng)?shù)亓私獾浇鍌月該品牌汽車實際銷量如表:

月份

2018.08

2018.09

2018.10

2018.11

2018.12

月份編號t

1

2

3

4

5

銷量y(萬輛)

0.5

0.6

1

1.4

1.7

1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放破噷嶋H銷量y(萬輛)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程,并估計20191月份該品牌汽車的銷量:

2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對購該品牌車進行補貼.已知某地擬購買該品牌汽車的消費群體十分龐大,某調(diào)研機構(gòu)對其中的200名消費者的購車補貼金額的心理預(yù)期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

補貼金額預(yù)期值

區(qū)間(萬元)

[1,2

[2,3

[3,4

[45

[5,6

[6,7

頻數(shù)

20

60

60

30

20

10

將頻率視為概率,現(xiàn)用隨機抽樣方法從該地區(qū)擬購買該品牌汽車的所有消費者中隨機抽取3人,記被抽取3人中對補貼金額的心理預(yù)期值不低于3萬元的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ

參考公式及數(shù)據(jù):①回歸方程,其中,;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與橢圓交于A,B兩點,點P是橢圓C上異于A,B的一個動點,點Q在直線AB上,滿足(為坐標(biāo)原點)

1)求點Q的軌跡方程;

2)求四邊形OAPB的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為

(1)當(dāng)時,試確定曲線的形狀及其焦點坐標(biāo);

(2)若直線交曲線于點、,線段中點的橫坐標(biāo)為,試問此時曲線上是否存在不同的兩點、關(guān)于直線對稱?

(3)當(dāng)為大于1的常數(shù)時,設(shè)是曲線上的一點,過點作一條斜率為的直線,又設(shè)為原點到直線的距離,分別為點與曲線兩焦點的距離,求證是一個定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動點,點在射線上,且滿足.

(Ⅰ)求點的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點,過點且傾斜角為的直線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入,則輸出的結(jié)果是( )

A. -2018B. 2018C. 1009D. -1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發(fā),被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發(fā)被雙曲線反射后的反射光線等效于從另一個焦點發(fā)出;如圖,橢圓與雙曲線,)有公共焦點,現(xiàn)一光線從它們的左焦點出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過次反射后,首次回到左焦點所經(jīng)過的路徑長為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形PCD所在的平面與等腰梯形ABCD所在的平面垂直,ABADCD,ABCD,CPCDMPD的中點.

1)求證:AM∥平面PBC;

2)求證:BD⊥平面PBC

查看答案和解析>>

同步練習(xí)冊答案