【題目】某校高一某班的一次數(shù)學(xué)測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題;
(1)求分?jǐn)?shù)在[50,60)的頻率及全班的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(3)根據(jù)頻率分布直方圖,估計(jì)該班數(shù)學(xué)成績的平均數(shù)與中位數(shù).
【答案】
(1)解:分?jǐn)?shù)在[50,60)的頻率為0.01×10=0.1,
由莖葉圖知:分?jǐn)?shù)在[50,60)之間的頻數(shù)為3,所以全班人數(shù)為30
(2)解:分?jǐn)?shù)在[80,90)之間的頻數(shù)為30﹣3﹣6﹣9﹣3=9,
頻率分布直方圖中[80,90)間的矩形的高為9÷30÷10=0.03
(3)解: =55×0.1+65× +75× +85× +95× =76,
所以該班數(shù)學(xué)成績的平均分?jǐn)?shù)估計(jì)為76分
【解析】(Ⅰ)根據(jù)分?jǐn)?shù)在[50,60)的頻率為0.01×10,和由莖葉圖知分?jǐn)?shù)在[50,60)之間的頻數(shù)為3,得到全班人數(shù).(2)分?jǐn)?shù)在[80,90)之間的頻數(shù)為30﹣3﹣6﹣9﹣3,做出頻率,根據(jù)小長方形的高是頻率比組距,得到結(jié)果.(3)用各矩形中點(diǎn)的橫坐標(biāo)乘以本段的頻率作和.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖和平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識(shí)可以得到問題的答案,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若,且直線分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校體育節(jié)中,某班全體40名同學(xué)參加跳繩、踢毽子兩項(xiàng)比賽的人數(shù)統(tǒng)計(jì)如下:
參加跳繩的同學(xué) | 未參加跳繩的同學(xué) | |
參加踢毽的同學(xué) | 9 | 4 |
未參加踢毽的同學(xué) | 7 | 20 |
(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一項(xiàng)活動(dòng)的概率;
(2)已知既參加跳繩又參加踢毽的9名同學(xué)中,有男生5名,女生4名,現(xiàn)從這5名男生,4名女生中各隨機(jī)挑選1人,求男同學(xué)甲未被選中且女同學(xué)乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=cosπx的圖象與函數(shù)y=( )|x﹣1|(﹣3≤x≤5)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( )
A.4
B.6
C.8
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓, , 是圓上的動(dòng)點(diǎn),線段的垂直平分線交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)設(shè), ,過點(diǎn)的直線與曲線交于點(diǎn)(異于點(diǎn)),過點(diǎn)的直線與曲線交于點(diǎn),直線與傾斜角互補(bǔ).
①直線的斜率是否為定值?若是,求出該定值;若不是,說明理由;
②設(shè)與的面積之和為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com