分析 (1)由已知中f (1+x)=f (1-x),可得f(x)的圖象關(guān)于直線x=1對稱,結(jié)合方程f (x)=x有等根其△=0,我們可構(gòu)造關(guān)于a,b的方程組,解方程組求出a,b的值,即可得到f (x)的解析式;
(2)對于任意x1∈[-2,1],總存在x0∈[-2,1],使得g(x0)=f(x1)成立,得到函數(shù)f(x)在[-2,1]上值域是g(x)在[-2,1]上值域A的子集,然后利用求函數(shù)值域之間的關(guān)系列出不等式,解此不等式組即可求得實數(shù)a的取值范圍即可.
(3)由(1)中函數(shù)的解析式,我們根據(jù)f(x)的定義域和值域分別為[m,n]和[3m,3n],我們易判斷出函數(shù)在[m,n]的單調(diào)性,進(jìn)而構(gòu)造出滿足條件的方程,解方程即可得到答案.
解答 解:(1)∵f(x)滿足f(1+x)=f(1-x),∴f(x)的圖象關(guān)于直線x=1對稱.
而二次函數(shù)f(x)的對稱軸為x=-$\frac{2a}$,∴-$\frac{2a}$=1.①
又f(x)=x有等根,即ax2+(b-1)x=0有等根,∴△=(b-1)2=0.②
由①,②得 b=1,a=-$\frac{1}{2}$.∴f(x)=-$\frac{1}{2}$x2+x.
(2)∵f(x)=-$\frac{1}{2}$x2+x,x∈[-2,1],∴函數(shù)f(x)的值域為[-4,$\frac{1}{2}$],
若對于任意x1∈[-2,1],總存在x0∈[-2,1],使得g(x0)=f(x1)成立,
則函數(shù)f(x)在[-2,1]上值域是g(x)在[-2,1]上值域A的子集,
①若k=0,g(x)=1,不滿足條件.
②當(dāng)k>0時,g(x)=kx+1在[-2,1]是增函數(shù),g(x)∈[-2k+1,k+1],
則[-4,$\frac{1}{2}$]⊆[-2k+1,k+1],
∴$\left\{\begin{array}{l}{-2k+1≤-4}\\{k+1≥\frac{1}{2}}\end{array}\right.$,
∴k≥$\frac{5}{2}$;
③k<0,g(x)=kx+1在[-2,1]是減函數(shù),g(x)∈[k+1,-2k+1],
∴$\left\{\begin{array}{l}{k+1≤-4}\\{-2k+1≥\frac{1}{2}}\end{array}\right.$,
∴k≤-5
綜上,實數(shù)a的取值范圍是k≥$\frac{5}{2}$或k≤-5.
(3)∵f(x)=-$\frac{1}{2}$x2+x=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$≤$\frac{1}{2}$.
如果存在滿足要求的m,n,則必需3n≤$\frac{1}{2}$,∴n≤$\frac{1}{6}$.
從而m<n≤$\frac{1}{6}$<1,而x≤1,f(x)單調(diào)遞增,
∴$\left\{\begin{array}{l}{f(m)=-\frac{1}{2}{m}^{2}+m=3m}\\{f(n)=-\frac{1}{2}{n}^{2}+n=3n}\end{array}\right.$,
可解得m=-4,n=0滿足要求.
∴存在m=-4,n=0滿足要求.
點評 本題考查的知識點是二次函數(shù)的性質(zhì),其中(1)的關(guān)鍵是由已知條件構(gòu)造關(guān)于a,b的方程組,(2)的關(guān)鍵是轉(zhuǎn)化為函數(shù)f(x)在[-2,1]上值域是g(x)在[-2,1]上值域A的子集;(3)的關(guān)鍵是根據(jù)函數(shù)的值域判斷出函數(shù)在[m,n]的單調(diào)性,進(jìn)而構(gòu)造出滿足條件的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[80,90) | 0.025 | |
[90,100) | 6 | |
[100,110) | ||
[110,120) | ||
[120,130) | ||
[130,140) | 12 | |
[140,150) | 0.05 | |
合計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{4}}]$ | B. | (0,1) | C. | $[{\frac{1}{4},1})$ | D. | (0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | z | 400 |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com