【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個,已知從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.

(1)n的值;

(2)從袋子中不放回地隨機抽取2個球,記第一次取出小球標號為a,第二次取出的小球標號為b.①ab2”為事件A,求事件A的概率;

在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件x2y2>(ab)2恒成立的概率.

【答案】1;(2;.

【解析】

(1)由題意可得,解得n2.

(2)①由于是不放回抽取,事件A只有兩種情況:第一次取0號球,第二次取2號球;第一次取2號球,第二次取0號球.所以P(A).

x2y2>(ab)2恒成立為事件B,則事件B等價于x2y2>4恒成立

(x,y)可以看成平面中的點,則全部結(jié)果所構(gòu)成的區(qū)域為Ω{(x,y)|0≤x≤2,0≤y≤2,xy∈R},

而事件B構(gòu)成的區(qū)域B{(xy)|x2y2>4,(xy)∈Ω},所以P(B)1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)= 則f(f(2))的值為;若f(x)=a有兩個不等的實數(shù)根,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=2,cosB= ,點D在線段BC上.

(1)若∠ADC= π,求AD的長;
(2)若BD=2DC,△ACD的面積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:max{a,b}= ,若實數(shù)x,y滿足:|x|≤3,|y|≤3,﹣4x≤y≤ x,則max{|3x﹣y|,x+2y}的取值范圍是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且cos2 = ,△ABC的面積為4.
(1)求 的值;
(2)若2sinB=5sinC,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的右頂點與上頂點分別為,橢圓的離心率為,且過點.

(1)求橢圓的標準方程;

(2)如圖,若直線與該橢圓交于兩點,直線的斜率互為相反數(shù).

①求證:直線的斜率為定值;

②若點在第一象限,設的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2013年1月,北京經(jīng)歷了59年來霧霾天氣最多的一個月.據(jù)氣象局統(tǒng)計,北京市2013年1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》如表1:

表1 空氣質(zhì)量指數(shù)AQI分組表

AQI指數(shù)M

0~50

51~100

101~150

151~200

201~300

>300

級別

狀況

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

表2是某氣象觀測點記錄的連續(xù)4天里AQI指數(shù)M與當天的空氣水平可見度y(km)的情況,表3是某氣象觀測點記錄的北京市2013年1月1日至1月30日的AQI指數(shù)頻數(shù)分布表.

表2 AQI指數(shù)M與當天的空氣水平可見度y(km)的情況

AQI指數(shù)M

900

700

300

100

空氣水平可見度y(km)

0.5

3.5

6.5

9.5

表3 北京市2013年1月1日至1月30日AQI指數(shù)頻數(shù)分布表

AQI指數(shù)M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

頻數(shù)

3

6

12

6

3

(1)設x=,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

(2)小王在北京開了一家洗車店,經(jīng)小王統(tǒng)計:當AQI指數(shù)低于200時,洗車店平均每天虧損約2000元;當AQI指數(shù)在200至400時,洗車店平均每天收入約4000元;當AQI指數(shù)不低于400時,洗車店平均每天收入約7000元.

①估計小王的洗車店在2013年1月份平均每天的收入;

②從AQI指數(shù)在[0,200)和[800,1000]內(nèi)的這6天中抽取2天,求這2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在原點,對稱軸是軸,且過點.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知斜率為的直線軸于點,且與曲線相切于點,點在曲線上,且直線軸, 關(guān)于點的對稱點為,判斷點是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在約束條件 下,當t≥0時,其所表示的平面區(qū)域的面積為S(t),S(t)與t之間的函數(shù)關(guān)系用下列圖象表示,正確的應該是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案