5.二次函數(shù)f(x)=x2-ax+a2-3有兩個零點(diǎn)分別為x1,x2,且x1<1<x2,則a的取值范圍是(  )
A.(-2,1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)

分析 利用二次函數(shù)的性質(zhì)以及函數(shù)的零點(diǎn)列出不等式求解即可.

解答 解:二次函數(shù)f(x)=x2-ax+a2-3的開口向上,有兩個零點(diǎn)分別為x1,x2,且x1<1<x2
可得12-a+a2-3<0,
解得a∈(-1,2).
故選:B.

點(diǎn)評 本題考查二次函數(shù)的性質(zhì)以及函數(shù)的零點(diǎn)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.三個數(shù)成等差數(shù)列,它們的和為6,積為-10,求這三個數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)曲線f(x)=-ex-x(e為自然對數(shù)的底數(shù))上任意一點(diǎn)處的切線為l1,總存在曲線g(x)=3ax+2cosx上某點(diǎn)處的切線l2,使得l1⊥l2,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,2]B.(3,+∞)C.$[{-\frac{2}{3},\frac{1}{3}}]$D.$[{-\frac{1}{3},\frac{2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若函數(shù)f(x)=x2-2ax+3為定義在[-2,2]上的函數(shù).
(1)當(dāng)a=1時,求f(x)的最大值與最小值;
(2)若f(x)的最大值為M,最小值為m,函數(shù)g(a)=M-m,求g(a)的解析式,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)[125${\;}^{\frac{1}{3}}$+($\frac{1}{16}$)${\;}^{\frac{1}{2}}$+49${\;}^{\frac{1}{2}}$]${\;}^{\frac{1}{4}}$;
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(x)=f(-x),f(x)在區(qū)間(-∞,0)上是減函數(shù),并且f(2a2+a+6)<f(3a2-2a+2),則實(shí)數(shù),a的取值集合是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=$\frac{{{{log}_a}({3-x})}}{x-2}$,則函數(shù)f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,3)B.(-∞,2)∪(2,3]C.(-∞,2)∪(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),當(dāng)x∈[0,1)時,$f(x)=\frac{-ax-b}{1+x}$,且$f(\frac{1}{2})=\frac{1}{3}$.
(1)求a,b的值及f(x)的解析式;
(2)判斷并證明函數(shù)f(x)在(-1,1)上的單調(diào)性.
(3)若f(x-1)+f(x)>0,求x的范圍.

查看答案和解析>>

同步練習(xí)冊答案