9.一個(gè)口袋內(nèi)有大小相同標(biāo)號(hào)不同的2個(gè)白球,3個(gè)黑球,從中任取一個(gè)球,則取到白球的概率是$\frac{2}{5}$.

分析 從中任取一個(gè)球,先求出基本事件總數(shù),再求出取到白球包含的基本事件個(gè)數(shù),由此能求出取到白球的概率.

解答 解:一個(gè)口袋內(nèi)有大小相同標(biāo)號(hào)不同的2個(gè)白球,3個(gè)黑球,
從中任取一個(gè)球,基本事件總數(shù)n=5,
取到白球包含的基本事件個(gè)數(shù)m=2,
∴取到白球的概率是p=$\frac{m}{n}$=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對(duì)任意的正整數(shù)n,a2n-1+a2n<0”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知α、β∈(0,2π),且α與β關(guān)于x軸對(duì)稱,則α+β=2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=(sinx,cosx),x∈R,f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的表達(dá)式;
(2)求函數(shù)f(x)的周期、值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)a>0,b>0,若關(guān)于x,y的方程組$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$無(wú)解,則a+b的取值范圍為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)10x=3,10y=4.
(1)10x+2y=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式;
(3)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,a=$\sqrt{3}$,b=1,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=ax2-a-lnx,g(x)=$\frac{1}{x}$-$\frac{e}{{e}^{x}}$,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x>1時(shí),g(x)>0;
(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,在平面直角坐標(biāo)系xOy中,O為正八邊形A1A2…A8的中心,A1(1,0)任取不同的兩點(diǎn)Ai,Aj,點(diǎn)P滿足$\overrightarrow{OP}$+$\overrightarrow{O{A}_{i}}$+$\overrightarrow{O{A}_{j}}$=$\overrightarrow{0}$,則點(diǎn)P落在第一象限的概率是$\frac{5}{28}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案